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Abstract

This work presents a new approach for building the feedback solution
for the minimum delay dynamic message routing problem for single destination
networks.

The approach fully exploits the special structure of the constraint
,g matrices obtained in the dynamic state space model suggested in previous works,
by transformiﬁg every linear program arising from the necessary conditions,

into a maximal weighted flow problem.

Taking advantage of several properties concerning the networks cor-

responding to the linear programming problems, all theorems regarding certain

o

simplifying characteristics of the feedback solution that apply in the case
of single-destination networks with all unity weightings in the cost functional

are reproved in a simplified and more straightforward manner.

A compact algorithm for the construction of the feedback solution is

presented, the algorithm being implementable on networks of reasonable size.

b, A method for obtaining all solutions of the linear programming prob-
lems required by the algorithm, based on the application of linear programming
techniques in networks is provided. The method is implemented by a computer

program and several examples are run to test its applicability.

In addition, a deep geometrical insight to every step of the algor-
ithm is given by deriving the explicit set of inequalities defining the prob-

4 lem constraint figure in the state-velocity space.

v The complexity of the problem is also analyzed, being exponential in
the number of the network nodes, thus giving an idea of the maximal network

size for which a full feedback solution can be obtained under the available

computational resources.
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Notation

N
L
(i,k)

ik
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Glossary of Notations

Definition

set of network nodes not including the destination node
set of network links

directed link from node i to node k

capacity of link (i,k)

vector of state variables

vector of velocity of state variables (-%)

vector of control variables

vector of costates

constraint figure in u-space

constraint figure in y-space

set of states travelling on interior arcs on [tp‘tp+1)
)

set of states travelling on boundary arcs on [tp’tp+1

set of states leaving the boundary at tp backwards in time
feedback control region constructed from optimal traject-

)

set of operating points on [tp,tp+1)

ories on the segment [tp,tp+1
a minimal cut of the network
demand for flow in node i
supply of flow to the network
cardinality of Ip

cardinality of Lp

the Hamiltonian at T

Convex Hull

Collection of nodes k such that (i,k)el

Collection of nodes & such that ®,del
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Section 1

INTRODUCTION

In [S1] a state space model for dynamic routing in data communication
networks is suggested. The main feature of this model is that it permits to
express the delay experienced by the messages travelling in the network in
terms of state and control variables describing the problem instead of models
based on queueing theory. The latter requires explicit closed-form expres-
sions for the average delays which can be found analytically only for very
3 special distributions and dependence relationships. The model also permits
- to develop closed loop strategies for the message routing problem and can

handle transients by changing the routing policy in a dynamic fashion.

We begin by presenting a brief description of the model, simplified

e O

to the case of single destination networks with zero inputs. Consider first

the following notations:

f; N=1{1,2,...,n} is the set of network nodes (not including the destination node).
d = destination node.
L = {(i,k)/i,ke NUd and there is a direct link connecting i to kl} 1s the
set of network links.
i E(i) = collection of nodes k such that (i,k)el.
: I(i) = collection of nodes & such that (2,i)el.
% All links of the network are taken to be unidirectional. Now, looking at the

network from a macroscopic point of view, the number of messages in each node

v can be approximated by a continuous variable called "amount of traffic". The

state variables of the system are defined as follows:
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xi(t) 4 amount of traffic at node i, at time t, where iceN.
The control variables are defined as:
uik(t) g amount of traffic on link (i,k) at time t where (i,k)el.

The dynamics of the system are given by the equations describing the rate of

change of the contents of each node, namely:

. x. (t) = - u, () + § u,.(@) (1.1)
;g__ i keEz(i) ik ger(i)

Y ielN

The constraints are:

x (8) 20 , (1.2a)
and

U:o<u () e, (1.2b)

where

¢ ik * capacity of link (i,k) 1in units of traffic/unit time, where

(i,k) elL.

The cost functional is taken to be the total delay experienced by the
messages travelling in the network, starting at a given time to and ending at

: a time tf when the network is emptied, i e xi(tf) =0, VieN. The ex-

pression for the above quantity is

te

J s J - x, (£)]de . (1.3)
ieN

o)

From now on, the various variables of the model will be represented in vector

form as follows: Denoting by x and u the respective concatenations of

state variables and controls, to every differential constraint in (1.1) cor-

responds a vector Pi such that:



.
y x. =bu ,
1 -1-

where the vectors Pi are the rows of the incidence matrix B of the network.

. Now we express the linear optimal control problem with linear state

A

and control variable inequality constraints representing the data communication

3 network closed loop dynamic routing problem as stated in [S1]:

Find the set of controls u as a function of time and state,

Dt ¥

ut) a0, telr,td

that brings a given initial condition §(to) =X, to the final condition
§(tf) = 0 and minimizes the cost functional (1.3) subject to the dynamics (1.1)

and to the state and control variable inequality constraints (1.2).

PR G

It is well know that in most optimal control problems it is quite
difficult to obtain feedback solutions. In our case however, owing to the
linearity of the problem, we can cover the entire state space with optimal

controls by solving just a comprehensive set of linear programs. In {S1]

- 3

an approach is suggested, by way of a simple example for constructing the
feedback solution. In [M1], {M2] and [M3} this approach is elaborated upon
by developing the so called Constructive Dynamic Programming Algorithm for
the construction of the feedback solution. We proceed now with a brief pre-
sentation of the results obtained in the above works and the conceptual

: lines of the Constructive Dynamic Programming Algorithm in order to provide
the reader with basic notions for the umdersténding of the present report.

We begin by presenting the necessary and sufficient conditions of optimality:
Theorem 1.1: (See (M1, pp. 53-63] or (M2, pp. 13-20]).

Let the scalar functional h be defined as follows:

haa(t),ae) & ATk = AT .
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A necessary and sufficient condition for the control law u*(*) el to be
optimal for problem (1.1) - (1.3) 1is that it minimizes h pointwise in time,
namely:

AT (£)Bu*(2) < AT (e)Bu(t) (1.4)
Vul®)el, Yreelt,t.]
The costate §(t) is possibly a discontinuous function which satisfies the

following differential equations:

-dA, (£) = dt+du, (1), YieN te [to,t (1.5)

A

where componentwise dui (t) satisfies the complementary slackness conditions:

x.(t)du.(t) = 0 .
1 1 V te [to,tf]

{1.6)
dui(t) <0 VieN
The terminal boundary condition for the costate differential equation is -
é(tf) =0 free , 1.7)
and the transversality condition is
ATt )x(t) =0 . (1.8)
- VN F

Finally, the function h is everywhere continuous, i.e.:
h(u(t)),A(t7)) = hu(t"),A(t), Veele ,t.] .
O Theorem 1.1
From inequality (1.4) of the necessary and sufficient conditions we

see that the optimal control function 9*(-) is given at every time

Te [to,t by the solution of the linear program

¢l

u*(t) = ARGMIN[AT (1)Bu(t)] . (1.9) .
u(r)el
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From (1.9), and owing to the structure of the incidence matrix B, it follows

wise constant in time.

Moreover, since the equations governing the dynamics

of the system are linear, the corresponding state trajectories have piecewise

constant slopes. From the nature of the contrcls follows that every optimal

trajectory may be characterized by a finite number of parameters. These para-

meters are:

e

U()_() {1_10191)"°:uf_1}

and

T &

where U(x)

is the sequence of optimal controls, T(x) is its associated

; control switch time sequence, and the element u_ is the optimal control on

te [tp,tp+1], pe (0,1,...,£-1].

Moreover, every segment of an optimal trajectory, say the segment

[tp’tp+1] is characterized by the following parameters:

‘ Bp {xi/xi(r) =0 VYre [tp’tp+1)}
A aad

e

Ip {xi/xi('r) >0 VYre [tp’tp+1)} s

that is, BP and Ip are the sets of states travelling on boundary arcs and

interior arcs respectively on [tp,tp+1). Now, the main fact following from

the nature of the optimal trajectories is that the state space can be divided

into regions, each one being a convex polyhedral cone, when to every point of

a specific region corresponds an identical set of optimal controls. This is

exactly the reason that makes the construction of a feedback solution possible.

The above regions are referred to as ''feedback control regions" and are de-

noted by R.

The problem is then to construct these feedback control regions, there-

by specifying the optimal control for every point of the state space. Now,

that there always exists an optimal solution for which the controls are piece-




e
A
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considering the special geometric characterization of the feedback space, and
thinking in the spirit of dynamic programming, let us look at the optimal
trajectories backwards in time, beginning at te We will then see a sequence
of states leaving the boundary (perhaps two or more at a time) and varying
with constant slopes. Now, in [M2] it is proven that if any state variable,
say *i’ is strictly positive on the last time interval [tf-l’tf] of an
optimal trajectory, then Ai(tf) = 0. Moreover, by (1.6) we know that for

this state we have dui(r). =0 ¥Yre [t so that by (1.5) we obtain

£-17%¢]

Ai(r) 2 -1 Vre [tf_l,tf].

Now suppose we had decided to check if there exist optimal traject-

ories in the state space with a specified set of states travelling on

Te1
interior arcs in the last interval and with the remaining states travelling

on boundary arcs. Since we know the costates corresponding to the states in

Tea

(by the above arguments} and using (1.9), these trajectories may be
found by solving the following linear program: . '

Find all:
u* = ARGMIN ] Ai(r)ii = ARGMIN ] A (b, u
geu xielf_l geu xielf_l
s.t. ) b (1.10)
xJ. = 0 iner_l _ )

Te (tf,tf_l)

The linear program (1.10) is called the constrained optimization prob-
lem and its solutions are trajectories only provided that there exist values

J\j Vx,eB that satisfy the necessar): conditions (1.5) - (1.6). Moreover,

j o f£-1
the solutions of (1.10) provide optimal directions :'c; ine If_1 in the

state space, defining the convex polyhedral cone corresponding to the feedback

f
i
¥
2
:
{
:




3
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control region characterized by the set of controls that solves (1.10). Now,
solving such a linear program for every possible combination of state vari-
ables leaving the boundary (backwards in time) at tf, we obtain feedback
control regions containing all points from which the origin can be reached
while maintaining sets If_1 away from the boundary for all t < tf. In fact
the linear program (1.10) must be solved parametrically in time until the con-
trol changes. A change in the control defines a hyperplane passing through
the origin called "breakwall". By solving (1.10) until the control does not
break any more, we obtain a convex polyhedral cone divided by breakwalls into

a finite number of regions. Each reginn is characterized by a specific control

set and is referred to as "break feedback control region'. The last region

constructed when solving (1.10), (i.e. when there are no more breaks in the

control) is called "mon-break feedback control region".

In order to continue with the description of the algorithm, let us

introduce the following definition:

L 4 {xi/xie:Bp and x, is designated to leave the boundary

backward in time at tp} .

Now, in order to cover the whole state space with optimal controls,
we must take every feedback contrrl region already constructed and allow every
possible combination of states still travelling on the boundary to leave it,
backward in time. In general, this step is performed as follows: Denoting
by R the feedback control region constructed from the optimal.trajectories
on the segment [tp’tp-l)’ pick a set of states of Bp. say Lp and parti-
tion ll.p into ''subregions" with respect to Lp. The concept '‘subregion"
will be explained later. In order to let Lp. leave the boundary at a certain
time ¢t (called boundary junction time), we must find the costate values

A i(tp) in € Lp that allow the departure of the states in Lp from the

P IPW WO
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boundary while still being optimal. The above costate values are referred to
as ''leave-the-boundary costate values'"., In geometrical terms the above co-
state values are found as follows:

By defining i

Q .

y 2 -x = -Bu

and
Y & (ye R uel) ,

%, . we can transform the linear program (1.9) into the following linear program

with decision vector X(T):

y*(t) = ARGMAX AT(1)y(7) (1.11)
- y(t)eY
{% so that at tp we can consider the hyperplane given by z(tp) = }T(tp)x

(called the Hamiltonian) tangent to Y (called the y-constraint figure) that
provides points of tangency Yp (called operational points) that are in fact

the optimal directions in the state space defining the feedback control

region Rp. Now in order to find the leave-the-boundary costates for Lp, .
we rotate the Hamiltonian around Yp until we touch a surface of tangency

of Y called Lp-positive face, having at least one point with

Yy ? 0 ineLP .

The new orientation of the Hamiltonian gives the desired leave-the-boundary

costates and now we solve a linear program of the form:
? Find all:

u* = ARGMIN  § A, (f)x, = ARGMIN ] ) (D)b.u
uell x.el xieI -1
i p-1 P

s.t.

%

X

<0 in € Ip-l = IpULp ) b 1.12) .

=0 ineB_

= B /L
p-1 " B/l

¥re (tpthy) o
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where (1.12) is again solved parametrically in time until the control breaks.

jﬁ A subregion of Rp is the set of all points which, when taken as the :
point of departure of Lp’ result in a common set of optimal controls.
Clearly, such a partitioning of Rp may exist since to two distinct points in
Rp correspond different leave-the-boundary costates. In geometrical terms,
we could see the Hamiltonian rotating according to the change in the costates

B when the states are travelling in Rp. When allowing Lp to leave the

P

boundary from distinct points of Rp’ the Hamiltonian could meet different

L -positive faces, therefore giving different leave-the-boundary costate values.

The steps described for the construction of feedback control regions

?} form the so-called Constructive Dynamic Programming Algorithm as stated in

[M1], [M2] and [M3]. Several features make the algorithm to be a conceptual
o one rather than an implementable one. Among them, breaks in the optimal con-
trols, the existence of the subregions just pointed out, non-uniqueness of the
leave-the-boundary costates, and non-global optimality of certain sequences,
in addition to computational complexities associated with the algorithm, for
instance the problem of finding all solutions to linear programs. However,
it turns out that when dealing with single destination networks, and when no
priorities are assigned to the nodes (that is the cost functional has unity
weightings), many simplifications are attained, leading to a compact and imple-

mentable algorithm at least for moderate size networks.

In the present paper, we deal with the construction of the feedback
solution to the minimum delay dynamic message routing problem for single
destination networks, with zero inputs and when the cost functional has unity

weightings. The approach used to tackle the problem is based on the trans-

s - i — g A Ao o g it g m | A = 3N i T
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formation of every linear program into a maximal weighted flow problem. The
transformation permits not only to develop a compact algorithm for obtaining
the feedback solution, but also to prove in a straightforward manner all the
simplifying features characterizing the feedback space, to develop a suitable
method for finding all the solutions to the linear programming problems and
to obtain explicitly the constraint figure in the state velocitybspace for
the geometrical understanding of the algorithm. The approach also permits
to gain insight into the complexity of the problem, thus providing the
essential information needed to estimate the maximal size of the networks for

which a complete feedback solution can be obtained under the available compu-

tational resources.

One of the most interesting features of the algorithm presented here
is that although the efficiency of the method for obtaining all optimal solu-

tions to the linear programs is reduced by the high degeneracy of the problems

at hand, this is compensated by the fact that the higher the degree of

E - degeneracy, the lower is the number of linear programs that have to be solved.
Moreover, the algorithm requires to check all possible sequences of states

leaving the boundary backward in time or, in other words, all the possible

‘.
e ot ep e eI T I ===,

trajectories in the state space to insure the complete covering of the state

space. Again the higher the degree of degeneracy, the lower the number of

such sequences that have to be actually checked, thus obtaining a further

reduction in the complexity of the algorithm
The organization of the paper is as follows:

In Section 2, a general description of the algorithm is presented and

the transformation of the linear programs into maximal weighted flow problems

is introduced.

Section 3 is devoted to the theoretical results obtained,

namely, the structure of the y-constraint figure and the proofs regarding all
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simplifying features of the feedback solution that apply in the case of single

destination networks.

In Section 4 the algorithm is presented in a compact form, the method
for obtaining all solutions to the linear programs is described and an example

of the construction of the feedback solution is given.

Finally, in Section 5 a brief discussion about the contributions of
this work is carried out and topics for further research in the area are

suggested.
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Section 2

GENERAL DESCRIPTION OF THE ALGORITHM

We begin with a brief preview of this section. In part A we present
a simplified mathematical description of the Constructive Dynamic Programming
Algorithm for building the feedback solution for the minimum delay dynamic
message routing problem for single destination networks with all unity weight-
ings in the cost functional. The algorithm consists of two steps. In the
first step, we construct feedback control regions resulting from the states
leaving the boundary at the final time (backward in time). The method to con-
struct these regions is depicted in parts B and C of this section. In the
second step, the rest of the state space is filled with optimal controls by
constructing the feedback control regions resulting from states leaving the
boundary, starting from already constructed regions. Part D of this section

deals with the construction of the above regionms.

A. Mathematical Statement of the Algorithm

In [M2], the following properties associated with the Constructive

Dynamic Programming Algorithm are mentioned:

(a) Non-global optimality of certain sequences of state variables leaving

the boundary backwards in time.
(b) Non-uniqueness of leave-the-boundary costates.
(¢) Subregions.
(d) Return of state variables to boundary backwards in time.

(e) Breaks in the optimal control petwoen boundary junction times.
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In [M3], a discussion of the above properties is presented in geo-
metrical terms. These problems complicate the formulation of a computational
scheme to implement the algorithm. However, as we will prove in Section 3 of
this paper, it turns out that these problems do not apply in the case of
single destination networks with all unity weightings in the cost functional,

thus permitting the following simplified statement of the algorithm:

Step 1: Solve the following series of linear programming problems:

Find all
u* = ARGMIN ] X, = ARGMIN ] bu ]
ueld x,eLp?t uel x.eL
u ifle u 16Lf
s.t.
x. <0 ¥x.eL ' > (2.1)
i- i f
xj =0 ijer_l J
for all LfC{xi/ieN}

when N denotes the set of nodes not including the destination.

Step 2: For all feedback control regions Rp:

(a) Calculate the leave-the-boundary costate values )«i(tp) for all

xi € Bp’ tp being an arbitrary boundary junction time.

(b) Solve the following series of linear programming problems:

Find all:
y* = ARGMIN | A (t)x, = ARGMIN ] A.(t)b.u
uel xef 1 P2 ueld x.ef 1 P°1 l
- i p-l - i~p-1
s.t. L
< (2.2)
x, <0 inelp_l ‘
X, * 0 Vv X eBp-l |
for all L cB

P P

P ———
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As we said before, in the first step, feedback control regions result-
ing from the states leaving the boundary at te, are constructed. Note that
in problem (2.1), the cost function has unity weightings. The reason is that
by Corollary 2 in [M2], Ai (t:f) =0 in 3 Lf, and by the necessary and suffici-
ent conditions for optimality (see [M2, pp. 13-17]), ii(r) = -1 ineLf.
Moreover, since there are no breaks between boundary junction times, the co-

states corresponding to states in Lf are equal for all rte (-»,t so that

Py
at every time in this interval the cost function is the same after normaliza-
tion. From this fact follows that at every time in (-w,tf) we obtain the
same set of optimal solutions to problem (2.1), so that the time plays no role
here. Notice also, that since each set of state variables leaving the boundary

corresponds to a globally optimal solution, every solution to (2.1) gives an

optimal trajectory.

In the second step, feedback control regions resulting from states
leaving the boundary from previouslf constructed regions are built. Since
there is only one subregion per region, it follows that from every point of
a given feedback control region, states leave the boundary with the same con-
trol set and therefore boundary junction times may be chosen arbitrarily. The
above reasoning together with the fact that the leave-the-boundary costates
are unique for a given boundary junction time, and with the fact that no state
variable is ever required by optimality to increase forward in time, justify

the simplifications obtained in the statement of the algorithm.

The first step is carried out as follows: First, the linear program
corresponding to the leave-the-boundary of all states is solved. Second, the
linear programs corresponding to (n-1) states‘leaving the boundary are solved
(when n is the number of nodes in the network not including the destination

node), and so on. As it will be shown later, this way of solving the first

g ok )
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step enables in general a considerable reduction in the number of linear pro-
grams that have to be solved. Moreover, it will also be shown later that in
fact the second step does not require solving any linear programs, thus greatly

reducing the complexity of the algorithm.

B. All States Leave the Boundary

According to (2.1), the linear programming problem we have to solve for

this case is:

Find all:
u* = ARGMIN ] X, = ARGMIN ] b.u , (2.3)
uel ieN : uel ieN i
s.t.
il _<_O VieN , (2'33)
0 i“jk f-cjk
U = : (2.3b)

YG.Kel

Adding slack variables Y3 > 0 to the differential constraints (2.3a), prob-

lem (2.3) is transformed into:

Find all:

u* = ARGMIN ] b.u=ARGMAX ] v, , (2.4)
- uel ieN uel ieN
s.t.
xi+yi = 0
VieN , (2.4a)
y; 20
0 =y =5 .
U= (2.4b)
V@G,k) el

Notice that in terms of the variable '"y', the minimization problem (2.3) is

RO e

et €
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transformed into the maximization problem (2.4).

Suppose we are interested in finding only one solution to problem (2.4).
In order to do this, we transform the linear program (2.4) into the following

Maximal Flow Problem:

Maximize F = Z Y. 2.5)
ieN 1

-jeEZ(i)uij ’ kelz(i).uki R
YieN (2.5a)
v, 20
: 02 Y%k = %k
1 geU = . {2.5b)
v V G,k el

The network corresponding to problem (2.5) is formed by adding to the
original network a new node called the "sourcé", and n links with no capacity
constraints connecting the source with each node of the network (except for the
destination node). The slack variable "yi" represents the flow on the link
connecting the source with node i. F represents the total flow into (and out
of) the network (see Fig. 2.1).

s = source node
d = destination node

The links connecting
the different nodes
are omitted here to
avoid causing havoc
in the figure.

— T

Figure 2.1 - Network representing Problem.(Z.S)
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The transformation of the- linear program into a Maximal Flow Problem

is the fundamental step required for the proofs of the theorems regarding the

simplifying properties of the feedback solution. In Appendix A, we give basic
concepts of graph theory that we use in the development of the algorithm and

in the proofs of the theorems.

~§ Now we continue with the solutions of problem (2.5). OQur aim is to
A find one solution to problem (2.5) by means of the Maximal Flow Algorithm and

then, without changing the flow achieved in the first optimal solution, to per-
g form all possible pivots on the network in order to find all the remaining
;. optimal solutions of problem (2.5). Notice that since we are seeking extremal

optimal solutions, we require that the first one will be an "extended basic

optimal solution", (see Appendix A). In this way every solution obtained by

3N e ™

pivoting will also be an extended basic optimal solution, thus representing an

extremal point in the optimization space. It turns out that finding a first

"extended basic optimal solution" to probleﬁ (2.5) is trivial. From the fact

that the links corresponding to the "y" variables do not have capacity con-
straints follows that there exists only one minimal cut in the network (denoted

by (X,X)), and it is composed by all the links connecting the nodes with the

destination; thus:

= {s,1,2,...,n} ,

{d} .

Then we choose as the first optimal solution the following flows:

ie1(d)

otherwise

uid = cid VYiel(d)
uij = uki =0 jeE(), kel(i)
YieN




T

i e T

- 19 -

and

F = (2.6a)

ieIZ(d) “id
Clearly, (2.6) is an "extended basic solution'" if the variables yi
are declared basic and the remaining variables are declared non-basic. Notice
that if there is no direct connection between a node, say node i, and the
destination node, then the variable Yy is basic with value zero. Now, since .
networks have generally many nodes not connepté&‘directly with the destination
we are dealing here with linear programming problems of a high degree of
degeneracy. The degereracy problem lowers the efficiency of linear program-
ming methods, however in our case, the higher the degree of degeneracy, the
lower is the number of linear programs we have to solve. This subject will

be discussed in Part C of this sectionmn.

e

Recall that after finding the first "extended optimal basic solution"

we are interested in maintaining the achieved flow to assure that every solu-

tion obtained by pivoting operations on the network will be optimal. But
maintaining maximal flow in the network implies that at every solution the
flow on the minimal cuts will be constant and maximal; thus, before pivot-

ing we can reduce the number of variables of the problem by transforming the

network to the one depicted in Figure 2.2:

'bl -b2 ”bk --bn

Figure 2.2 - Network configuration before the pivoting operation.

——————easmns st
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In Figure 2.2, bi accounts for the 'demand" of flow in node i, and
bs is the "supply" of flow to the network where:
ieI(d)

YielN
0 otherwise

Cid

o
]

(2.7)
C.
S jer(a)

Clearly, the reduction in the number of links facilitates the work of finding
all optimal solutions. After the reduction, the remaining optimal solutions

are found by means of the algorithm we present in Section 4.

C. A Subset of States Leaves the Boundary

In this case, we let a subset L C{xi/isN}, such that Lf # {xi/ieN}

f

to leave the boundary at tf, while all other states B{__._1 remain on the

boundary. By (2.1), the linear program to be solved is:

Find all:
u* = ARGMIN ] X, = ARGMIN [ b.u
uel x.,eL,. ! uel x.elL.?
- i °f - i f
s.t.
xi:O Y xiaLf | s
X; =0 VxJ.er_l

Transforming (2.8) into a Maximal Flow Problem, we have:

Maximize F = 2 Y.

i
xie Lf
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\
- u,.+ u .+y. =0 V¥x eL
jeE@) 1 kerqy ¥ A it
u,. - . =0 ¥ x. e Bg
i jeE(i) Y keI(i)uk1 1
: ! (2.9a)
’ L
ks yi >0 V/xie £
&
o
%»i 0 <uk f-cjk
ue U= .
a2 The network corresponding to problem (2.9) is formed by adding a new

node called the "source" to the original network, as in Part B of this section.
: ¢ The difference here is that we add links without capacity constraints connect-
: ing the source only with those nodes that correspond to state variables of Lf.
Nodes corresponding to state variables ip Bf_1 will be not connected with the
source. For example, Figure 2.3 shows a network with five nodes corresponding

to the case of two states leaving the boundary:

F

Figure 2.3 - Example of network when only some states leave the boundary.

OQur aim is, as in Part A, to find a first "extended basic optimal solu-
tion" to problem (2.9) and then by pivoting to find the remaining solutions.

But here we cannot obtain the first optimal solution by inspection since it is
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not trivial to localize a minimal cut in the network. Moreover, we can obtain
an optimal solution by applying the Maximal Flow Algorithm to the network, but
this solution may not necessarily be an extended basic one. In order to over-
come this difficulty we present now two theorems and a corollary that will
assist us in developing a method to solve the problem when only some states
leave the boundary. In addition these results will show that in general there
are many combinations of state variables leaving the boundary for which it is

not necessary to solve a linear programming problem.

Theorem 2.1

Consider the following two linear programming (or Maximal Flow) problems:

Problem 1
Maximize F. = z Y.
b eyl
i f
s.t.
- Z u, .+ Z .+y, =0 Vx. elL!
jeE) U ger) ¥ it
u,. - z . =0 ¥ x, € B}
jeE(i) Y ksI(i)ukl oof-d
1)
Yy 2 0 Y xit-:Lf
1.1€U
Problem Il

Maximize F, = ] y
x.eL
i f

- ] wu .+ . +y. =0 ¥x el
jeE(i) 1! keI(i)ukl t 1%

u,, - Z . =0 ¥x, eB
jeE(1) 1 xef(i) i 1 f-1
y; 20 ineLf

uel ,

where LfC LEC{xi/i e N}

[
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If in problem I exists a basic optimal solution with (yj = 0,

ij € L":./Lf}, then all the basic optimal solutions of II are basic optimal
solutions of I. Moreover, for the networks representing the above problems,

all minimal cuts of II are minimal cuts of I.

b Proof
Take the solution of I with {yJ. =0, ij € L%/Lf}. This solution

satisfies the constraints of II and clearly Max F

= Max Fz. Now take all
Beu

1 9€U
basic optimal solutions of II and add new variables (yi >0, ine L%/Lf}

as non-basic ones with value zero. Clearly all these solutions satisfy the

R Y P

constraints of I. Moreover, since Max F1 = Max Fz, and the new variables
were added as non-basic ones, the solutions are also basic optimal solutions

of I.

S -

For the corresponding networks, take now all solutions of I with

. . . - . ) :
‘{)':j 0, v xJ. € Lf/Lf}. Removing the links corresponding to {.yj/xj E LE/Lf}

will give the network configuration of II, and hence all the minimal cuts of .
4 IT are minimal-cuts of I.
O Theorem 2.1.
With the notation of theorem 2.1, suppose that there is no set Li:
such that Lfc Lé, and that all basic optimal solutions for Lf are also
basic optimal solutions for L!. Then a minimal cut for Lg is (X,i)’ where

b3
X = {(ieMV {s}/xi € Lf} .

Proof '
The proof will be carried out by contradiction. Clearly every node
{i/xi £ Lf} belongs to X since there are no'upper bounds on the variables

y . Now, suppose that there exists a minimal cut (X',X') such that
i

X' = XVUj where xj £ Lf. Then we can add to the network of problem II a new
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non-basic variable yj > 0 with value zero (i.e., a link connecting the
source with node j with zero flow). By Theorem 2.1, all basic optimal

£
in contradiction to the assumption that there exists no such set.

solutions of II are also basic optimal solutions of I, where L. = Lfoj

O Theorem 2.2

Corollary 2.1

Under the assumptions of Theorem 2.2, when maximal flow is achieved,
all links:

i }
{(1,k)eL/xieLf,xkrfLf ,
have a flow equal to ik and all links:
{G.1)el/x;ely, X, £L)

have flow with value zero. (Follows from Theorem 2.2 and the Max-Flow-Min-Cut

Theorem).

O Corollary 2.1

Now we are able to present a method for solving problem (2.8). Re-
call that step 1 of the algorithm calls for solving a series of linear pro-
grams: First the linear program corresponding to all states leaving the

boundary, then those corresponding to all combinations of (n-1) states

leaving the boundary, etc. In other words, if Lé and Li are two sets of

states leaving the boundary corresponding to two successive substeps of

step 1, then cardinality L2 < cardinality L;.

f
substep of step 1 corresponds to the set of states Lf. If in an earlier

Now suppose that the current

substep (say, corresponding to the set L%) we obtained a basic optimal solu-

tion with (yj = 0, ij eLi/L;} and L.CLZ, then by Theorem 2.1 all

f
optimal solutions of the current substep (Lff are included in the set of

optimal solutions of the earlier substep (L%). Therefore we do not need to

solve the linear program corresponding to the current substep. In algorithmic

3 e T e TP AT

ppapamym———t
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terms, there are two ways for checking the existence of such a set L%:

1. To search all solutions obtained in earlier substeps corresponding
to sets L'f where Lfc L'f, while looking for a solution with
= )
{yj 0 ij > Lf/Lf}.

2. To find the Maximal Flow cofresponding to the current substep (Lf)

and then to look for earlier substeps L'f such that Lfc L% with

the same value of Maximal Flow.
Method (2) follows from the proof of Theorem 2.1.

Suppose now that there is no set L% such that LfC L% and such

that the problem corresponding to L'f has an optimal solution with

{yj =0 ij € Li—‘/l‘f}‘ In this case we apply to the network corresponding to
Lf the Maximal Flow Algorithm. According to Corollary 2.1, when maximal
flow is achieved, the network can be partitioned into two subnetworks as

shown in Figure 2.4:

Figure 2.4 - The two subnetworks separated by a minimal cut.

Recall that since we are building a feedback control region, we are
searching for all extremal values of (yi/xi € Lf} and the corresponding
controls {ujk/ (j,k) e L}. But we notice that only pivots on the subnetwork

corresponding to X will lead to new extremal values of (yj/ X € Lf}, so
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that in order to obtain all optimal solutions to the problem corresponding

to Lf we concentrate on the reduced network depicted in Figure 2.5:

-~
XieLf

_ Figure 2.5 - Network configuration before the pivoting operation.

In Figure 2.5 we define:

c., + c.. YieI@dNIK/x €B, )
[ id jel':‘z(i) ij % € P£1
xthf
b, = c.. YifI(d) and ielI(k/x eB,. .) - (2.10)
i 5eE (i) ij : % ¢ Pea1
xJ.th
cid VielI(d) and itI(k/xker_l)
L 0 otherwise
b= | b, (2.10a)
S 1
xieLf

For the first basic optimal solution we take

y; *b; V¥xelg

(2.11)

ups " 0 Vx el jeE@N li/x; e Ly}

By pivoting on the network of Figure 2.5, we obtain all the required
optimal solutions, when for each solution the flow values on the 'links in X

are equal to those achieved when applying the Maximal Flow Algorithm.

G
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Notice that at every substep of step 1 a further reduction of the net-
work is obtained. Moreover, from considerations of Theorem 2.1, there might be

many substeps for which there is no need to solve a linear program.

D. States Leaving the Boundary from Constructed Feedback Control Regions

We deal here with step 2 of the algorithm of Part A of this Section.
In this step we find the leave-the-boundary values of the costates Ai for all
X; € Bp corresponding to a constructed feedback control region R_, and then
we solve a linear program of the form (2.2) for each ch.Bp. Step 2 is per-
formed iteratively for each previously constructed feedback control region. We
point out here, that the values of the costates corresponding to Ip and the
values of the costates corresponding to states leaving the boundary (Lp) are
positive. These details will be proved in Section 3. As for step 1 of the
algorithm, step 2 can also be greatly simplified, as shown by the following

theorem:

Theorem 2.2

Consider the problem

imi Y. a, >0 x,. el (2.12
Maximize x.e% ay, i (4 i€ Tpg )
i p-1
s.t. W
-1 uw,.+ ] . +y. =0 Vx el
jebry B kefqy b4 1op-l
] wu.- I . =0 Vx eB
je(1) Y kef(i) X 1ol ) (2.12a)
)’i 2_ 0 V xi € Ip_l
uel )

A basic optimal solution of (2.12) with arbitrary coefficients {ai} is also

a basic optimal solution of (2.12), with {ai » I,ine Ip-l}’

O T - R T A0 o ) NPT 1




Assume that:

F, = optimal value of (2.12) with {ai =1, ineIp_l} .

y* = optimal solution vector to (2.12) with {ai >0, ine I

pl}'

Now suppose that:

+*
Doy, <F . (2.13)

Then the Maximal Flow Theorem (see Appendix A) implies that if (2.13) is
satisfied, ‘we 'can always find a path between the source and the destination
nodes of the network corresponding to problem (2.12) on which we can increase
the flow, in contradiction with the assumption that z* is an optimal solu-

tion to (2.12) with {ai > 0, ineIp_l}. Now, noting that:

%*
I vi>F (2.14)
x.el
i p-1

cannot be satisfied, since clearly a flow satisfying (2.14) violates the con-

straints' (2.12a) by the Maximal Flow Theorem, then:

Y. = F1 . (2.15)

Moreover, since the structure of the network corresponding to problem (2.12)
{ does not depend on the weightings {ai}, then all basic optimal solutions
of (2.12) with {a, >0, in € Ip-l} are also basic optimal solutions of

b

(2.12) with {a, =1, ineIp_l

0 Theorem 2.2

o —

Now, transforming the linear program (2.2) into a Maximal Flow Prob-
lem in a network with weights on the links connecting the source with every

node, we have:
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Maximize 1 Ay, (2.16)
x.el 11
i 7p-1
s.t.
- u,. + Z u.+y. =0 V¥x el
jeE(i) M ker(i) ¥ 71 i~ p-1
J u.- Y wu.=0 ¥x eB
jeE(i) M ker(iy X4 i77p-1 |} (2.16a)
y; 20 ¥ x e L
uel J

According to Theorem 2.2, all solutions of problem (2.16) are solu-
tions of problem (2.9) with Lf = Ip—l’ therefore every linear program of

step 2 of the algorithm of Part A of this section reduces to the following

simple problem:

From among all solutions of problem (2.9) with Lf = I (denoted

p-1’
by y*) choose those satisfying:

Max ¥ Yy
*
yely*} xielp_1
Note that step 1 is performed for all possible combinations of states, assur-

ing that we can always find a set Lf such that Lf = Ip-l'
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Section 3

THEORETICAL RESULTS

A. The Structure of the y-Constraint-Figure

in the Positive Orthant of the y-Space

In [M3] the y-constraint-Figure, VY, is defined as follows:

v & (ye RN ucl}
where
0 =¥y = Cik
U=
¥(i,K) e L

and the linear transformation relating Y and U is given by:
A )
y(t) = -x(t) = -Bu(1) ,
where B is the incidence matrix of the network.

Since U 1is a bounded convex polyhedron in R?, its image Y is
clearly a bounded convex polyhedron in R". Thus, every face of Y can be
analytically described by an expression of the form:

n
Pay =i, , (3.1

. i
i=l

where {ai} is a set of coefficients and 2({31}) a constant with value

depending on the set {ai}.

Our first aim is to prove that all coefficients {ai} corresponding
to any face of Y that is in the positive orthant of the y-space are nonnega-

tive. This is easily demonstrated if we consider a constraint of the form

n
iglaiyi L TCCYR) I (3.2)




- 31 -

passing through the positive orthant of the y-space so that there is at least

a point Zl‘ lying on the boundary of (3.2), satisfying:
yi>0 VieN . (3.3)

Suppose now that a coefficient of (3.2), say ., is negative and let us con-
centrate on one of the paths carrying flow from the node k to the destination.
At least one such a path exists since y; >0 by (3.3). Clearly, by decreas-
ing the flow on this path the flow on the network will remain feasible, but we
violate the constraint (3.2) since 3, is negative. Therefore all coeffici-
ents of (3.2) must be nonnegative. Moreover, clearly the constant z({ai})

is given by:

n
£({a:}) = Max a.y. . 3.4
i 7 izl i7i (3.4)

In order to obtain an explicit set of constraints defining Y in the positive
orthant of the f-space we must take all the constraints (3.2) and eliminate
those which are redundant. To do this, we shall present now three redundancy
conditions and we will prove that if a constraint such as (3.2) satisfies at
least one of the conditions, it is redundant. Moreover we shall prove that

a constraint satisfying not one of the above conditions is not redundant. In
other words, a necessary and sufficient condition for a constraint of the form

(3.2) to be redundant is the fulfilment of at least one of the conditions.
For a constraint such as (3.2) we denote

D = {i/0 < a; e{ai}}
and

k(D) = Max Z Ys
y D




Redundancy Condition 1

The hyperplane

;o g ay, = L({a; M (3.5)

is redundant if at least two of its coefficients are different.

Proof

By Theorem 2.3:

fye¥/] a,y, = s{a,Dre{yeV/] y, = k(D)}
D D

Namely, to a hyperplane of the form (3.5) always corresponds another hyper-

plane with unity coefficients containing all points of tangency of (3.5) with V.

Redundancy Condition 2

The hyperplane

g y; = k(D)

is redundant if there exists a set of indeces D' such that:

pcp

g' y; = k(D)

By Theorem 2.1, if (3.7) is satisfied, then:

{ye¥/I y. =x(}ec{ye¥/]y. = k(D)}
- p *? - opr?
Namely, the hyperplane (3.7b) contains all points of tangency of (3.6) with VY.

Redundancy Condition 3

The hyperplane
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is reuundant if there exist sets of indeces {Bj’ j=1,2,...,r}, satisfying:

T
¥ k(B)) = k(D) , (3.9a)

*
W
o
"
o
———

)
! (3.9b)
e %
- B.N B, = {¢} ¥j ,j,ell,2,...,r}
by N B, T Vg, )
1
; where
3 kK(B.) = Max § y. . (3.9¢)
¢ J y B, !
A j
Proof
’ There are no common links to the minimal cuts corresponding to the
} hyperplanes (3.9¢), because the existence of one such link implies:
T r r ;
k(D) = Max } y, = Max LoDy« 1 Max [y = ¥ k(B;) -
: Y D : 3=1 B, j=1 Y B j=1

T
or k(D) < ZR(Bj) contradicting (3.9a).
j=1

Now if there are no common links to the minimal cuts corresponding 3

the hyperplanes (3.9cj, then by (3.9b) follows that:

L1}

{ye¥/§ vy, = k(®)}

r
y lye¥/ye N (L v, = k(B3 ,
D j=1 B J

LWy

therefore (3.8) is redundant.

O Redundancy Conditions

We prove now by contradiction that a hyperplane of the form

g y, = k(D) (3.10)

satisfying none of the three redundancy conditions is not redundant. To thas

end we assume that (3.10) does not satisfy redundancy conditions 2 and 3
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(condition 1 is clearly not satisfied by (3.10), but is redundant. If (3.10)

is redundant, then there is a non-redundant hyperplanse of the form:

Ly; = k(D") (3.11)
Dl
such that:
ye¥/Jy, = k@I C {ye¥/ Jy;, = k®I} , (3.12)
D D'

and this for the following reasons:

Every solution of (3.10) over Y is feasible and tangent to Y. The
surface of tangency common to (3.10) and Y is clearly a convex hyperplane of..
dimension m, where m < (n—l), (if m= (n~-1) then (3.10) is not redundant).
Now, an m-dimensional hyperplane on the boundary of Y corresponds to the inter-
section of (n-m) non-redundant hyperplanes of dimension (n-1), and every
point of tangency of (3.10) with Y belongs to every one of these (n-m)
hyperplanes. Hence, (3.12) applies to every one of the hyperplanes forming the
surface of tangency, and for the proof we need to consider only one of them,

say the hyperplane given by (3.11).

Now, we prove that (3.10) is not redundant. Note that in general the

index sets D, D' can be partitioned as follows:

D

"

{p,,D,}

D'

{DI’DS}
where
D1° 02 = Dlh D3 = DZA D3 = {4}

Qur aim is to contradict (3.12), considering all possible relations between

the sets D and D'. There are four cases:
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Case 1: D1 = {¢}; D2 # {¢}; D3 # Lo},

In this case we choose a point y* satisfying:

* * =
[Z)yi DZyi k(D) ,
2
where
y: >0 Vl.sD2

* = 3
y3 0 VlEDs

Clearly, since D3 # {¢} we have:

Ly

Iy;=0<k@®) ,
D' D

3
thus contradicting (3.12).

Case 2: D3 = {¢}; D1 # {6}, D, £ {0},

Here we choose a point y* satisfying:

g y§ = k(D)

g y; = k@,)
2

But if (3.10) does not satisfy redundancy condition 3, then:

k(D) < k(D) +k(D,) ,
therefore from (3.13) and (3.14) follows that:

Dz'y; = DZy; = k(D) - k(D,) <k(D,) = k(D')
1

or
Ty* <k(@) ,
p' !

in contradiction to (3.12).

’

(3.13)

(3.14)
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Let us chcose a puint " satisfying f y* = «{D} = k{Dlp s
4 e
& where
. - y; 0 ¥uenf =0
‘ y' =0 V Lb D‘
> : 3
& )
; Now, 1if Ey; = k(D'} = k(D,), then since L€ 0", hyperplens (3. 10} ‘
i D' - H
F satisfies redundancy condition 2, cintradicting the as:umptions, thus. i
23 ) ‘
. Dys s k(D' ‘
3 pr R
k- in contradiction to (3.12)-
| Case 4: D, 7 los; D, 7 tor; Dy 7 {e} .
§ !
.% In this case we choose a point satisfying: }
. [
!
Ly = k(D) |
D - . 2
where | E
y: >0 VieDd ;. (3.15) P 1
t j
| ?
* = { {
s yt =0 V1LDS i

< k(B') since if

- T
This point satisfies Ly;
Dl

Sy * k(D)

AR ’

D' *

{3.16)

e s

then from (3.15) and (3.16) follow, that:

Lo ga

Max E y. ® E y* o= k(D)

y pvp'* opwp'!

Thus, (3.10) satisfies redundancy condition 2 in contradicticn tc rhe assumpticns.

Therefore y* contradicts (3.12).

»
In order to 1llustrate the procedure for obtaining the y-conitraint

figure in the positive orthant cf the y-space, we present the fii.cwing simple

" SR
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example in two dimensions:

Example 3.1

Consider the network depicted in Figure 3.1:

c12=2 .

Figure 3.1 - Network of Example 3.1

Finding the maximal flow values of the networks shown in Figure 3.2,

we obtain:

(a) M;x y, = 4 () Maxy, = 3 (e) Max (yy*y,) = 4

(a) (b) (c)
Figure 3.2 - Networks to find the maximal flow.

Clearly the hyperplane Yy * 4 is redundant by redundancy condition 2, and VY

is defined by

and

At
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The region Y in the positive orthant of the y-space is depicted in

Figure 3.3:

1 2 3 4 ¥y

Figure 3.3 - Structure of ¥ in Example 3.1

O Example 3.1

B. Special Properties of the Feedback Solution for'Sing}e Destination Networks

o with all Unity Weightings in the Cost Functional i

As we mentioned in Part A of Section 2, several features associated with
the Constructive Dynamic Programming Algorithm in the case of multiple destina-
tion networks, or when the cost functional has nonequal weightings, complicate
the formulation of a computational scheme to implement the algorithm. However,

in the case of single destination networks with all unity weightings in the cost

"

functional various simplifications result, thus permitting us to develop a com-
pact algorithm for building the feedback solution. These simplifications are

stated and proved in [Ml1]. However, the approach in this work permits us to

carry out the proofs in a more simple and straightforward manner.

We begin with the central theorem of this section. The proof of this

g theorem is the basis of all subsequent proofs.

Theorem 3.1

The value of the leave-the-boundary costates are unique at a given

R

boundary junction time t

.

p ¢

: A
; i
} T

Y R P TSR YT e s T
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. . Proof

y Assume that tp is a fixed boundary junction time and consider first
the case in which we allow all states lying on the boundary to leave it, that

. is Lp = Bp. Let us denote by t; the time just before the states in Bp

leave the boundary, and by t; the time just after the states in Bp have

left the boundary, (going backwards in time). Now, the restricted Hamiltonian
+

at tp is:
EiN + + +
.. H(t ): z(t)) = A, (t . 3.17
;! (£ z(t) X‘EI 165y s (3.17)
B ip
- and the set of operating points in the y-space is given by:
Y = {ye¥/z(t)) = Max A, (tD)y.} :
i’p ;

,i We assume in this proof that all operating points in Yp are nonnegative, g

that is, they are in the positive orthant of the y-space. Later we shall prove

that in the case of single destination networks with all unity weightings in the

|

cost functional, we can consider only this orthant and that there always exists

a solution there.

We denote by "a'" the optimal value of the restricted Hamiltonian (3.17),

that is:

Max ) y. =a . (3.18)
y xielp 1 ‘

By the Constructive Dynamic Programming Algorithm, we have to find the
leave-the-boundary costate values associated with all states in Bp which allow
for the optimal departure of the states from the boundary at tp’ (see [M2]).
In geometrical terms, the above step calls for finding the values of {Xj(t;),

VX, € Bp}, for which the global Hamiltonian

3

=) z(t)) = A (t))y. + Aty 3.19

HimD): 2(t) X.EI 1 (8507 xigspl(l’)yl (3.19)
1°p

contains a Bp-positive face of Y (see [M3]). Notice that since the operation
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is made by rotating H(t;) around H(t;), then YPEH(t;), therefore:

Max ] A ey, ¢ ] Ai(t;)yitM;x I

(t)y. =a . (3.20)
Y x.el p x.eB x.el pa
ip i i’p

Now we prove the assertion:

:" Assertion 3.1

. +
(1) M) 20 Vxel
u (1) A (e) 20 ¥x;eB

Proof
(i) I1f x.ls Ip’ then xi has left the boundary for the last time at =,
where 1 > tp with an optimal slope Y; > 0. Now, clearly Ai(r) >0
t ~ since otherwise it is not optimal for X5 to leave the boundary at .
Therefore, since ii(t) = -1, Yte (tp,r), we have that Ai(t;) > 0,
in € Ip'

(ii) If Ai(t;) < 0 for some xisBp, then it is not optimal for x, to

leave the boundary, but X5 does leave the boundary, so that

Ai(tp) >0, in € Bp.

. Assertion 3.1.

Now, since {Ai(t;) > 0, in £ Ip}, then by Theorem 2.3 we have that:

Soms ~miiakiinothen, 4 ot A

; yeV/ ] Aty =ale{yeV/ ! vy, =)} , (3.21)
I - xiﬂp'l Pl T xel 1 P

where

k(I) = Max ] vy,
P x,el 1!
i’p

Moreover, since {xi(t;) >0,V X, € Bp}, then by Theorem 2.3 it follows that:
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Max{ | Y * ) Yi}
y xielp G

x.e A,

i j=1 j

so that
Max{ ] vy, + I y.}=k()
y xist 1 n 1 p
xiejl;)lAj

Therefore, since there is a finite number of states, then there is a (unique)
maximal set A = U A satisfying (3.23).
j=1 7
0O Assertion 3.2

From now on, the face of Y (of dimension less or equal to n-1),

defined by the set IpU A will be referred to as the (IPU A)-face.

Now, we concentrate on the set of states Bp and we prove the follow-

ing assertion:

Assertion 3.3

If eB_ but x,£A, then A (t) =
x:i b th the J(p)

The proof will be carried by contradiction. Assume that }‘j (t;) =0
for a set of states D such that DCBP/A. Then, the enlarged Hamiltonian
is given by:

-\ N a + )y, 3.24
H(E ) 2(t) Xizl A ey + _ZA’&“p’Yl . EDchtp)y (3.24)
P

Moreover, from Theorem 2.3 follows that:

{th/z(t ) = a} S {ye¥/ | yi* 2y1+ iyj = k(I_UAUD)} . (3.25)
xel, * xgeA x,€D P

Now, if k(IpU AUD) > k(Ip), then thH(t;) which is a contradiction; and

if k(IpUAUD) -k(Ip), then clearly DCA since A is the maximal set
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satisfying (3.23), again a contradiction. Therefore {Aj(t;) =0,V xje BP/A}'
O Assertion 3.3.

From assertion 3.3 follows that the enlarged Hamiltonian is given by:

- - + -
H(t ): z(t ) = A (T .+ A (t . = a, 3.26
(£ 2(t) x.zl $ (875 x_ZeAl(p)y1 (3.26)
ip i
and that the Bp—positive-face is given by the intersection of the Hamiltonian

(3.26) with the (IPU A)-face (3.23).

Now we prové by contradiction, that the Hamiltonian (3.26) is unique,
imﬁlying that the Bp-positive-face is unique. Suppose that there are two
Hamiltonians of the form (3.26) such that the intersection of every one of
them with the (IpL}A)-fhce gives two distinct Bp-positive-fhces. These Hamil-

tonians are:

1, .- + 1, - ]
t = A, (t . AL (t . 3 s 3.27
2 () = EI i p)y1+x_zeA j(ty; =8 (3.27a)
i’p i
) = LAy, I ake)y, = a (3.27)
P i i i~ pili ? :

x.el P x. €A
ip i

where for the two Hamiltonians to be distinct, there is at least one xie:A

such that A;(t;) # Az(t;). This also implies that there exist at least two
points zl >0 and Xz > 0 of the (Ip()A)—face, such that:

zl(t;) =3 1
L ae yl (3.28a)
) . Y
z (tp) < a J
and
2. - 3
z (tp) = 3
oty (3.28b)
. Y
z (tp) <a ‘
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Now consider the intersection of one of the Hamiltonians, say (3.28a)
with the (IpL)A)-face. Since both, the Hamiltonian and the (Ip\)A)-face are
convex and linear, their intersection will give a convex polytope. Moreover,
since the (IpUAA)-face is bounded, the intersection will give a convex poly-
hedron. Thus, starting at an extremal point of the polyhedron, we can always
reach any other extremal point of the polyhedron through a series of pivots.
Note that all extremal points of Yp are contained in the above intersection.
Suppose that, starting at some extremal point of Yp’ we want to reach the
point Xl through a series of pivots in such a way that after every pivot of
the above series we reach an extremal point of the polyhedron, that is, satis-
fying the equations of the Hamiltonian and the (IpU A)-face. We state that

the transition between Yp and yl can be done in the following way:

(i) Starting at Yp’ ‘reach the extremal point za through a series of

pivots on the polyhedron, where

a _ 1
AR A ineIpUA R
y (3.29)
a-
y; =0 ineBp/A

(ii) Without changing the coordinates corresponding to the states in Ip\}A,

reach Xl.

The above procedure is justified by noting that if we are moving over
the (IleA)—face, then every point reached after a pivot operation must
satisfy:

I v.+ [y, =x(), (3.30)
x.el Y xeAal P
i'p i

and by Corollary 2.1 the network looks as in Figure 3.4:




js VLRI "

Figure 3.4 - Network reaching the point Zl.

Clearly, in order to reach y1 we cannot make pivots between states

in IPU A and Bp/A because by making such a pivot we violate (3.30).

Recall that our aim is to contradict (3.27), that is to prove that
the Hamiltonian is unique. To this end we shall deal with pivots in the part
of the network corresponding to states in IpU A. First we prove the follow-

ing assertion:

Assertion 3.4

Starting at Yp’ we can always find a path in the network between
each node {j/xje:A} and some node {i/xie Ip}, that permits us to perform
a pivot while increasing (from zero) the flow in the link corresponding to yj

and still to remain on the Hamiltonian (3.27a).

Proof

Consider the series of pivots that reaches y1 from Yp. Suppose we
show that after completing n pivots of this series, we could also have in-
creased the flow yj, where xje A, corresponding to the (n+l)-st pivot

before the n-th pivot, reaching in this way a point Zb that satisfies the

equation of the Hamiltonian (3.27a). Clearly, the application of the same
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arguments to the new series of pivots that reaches Zb from Yp provides

us with the induction step that proves our assertiop. V
For the sake of clarity the following notation will be used:
the slack variable vyj that increases (from zero) in the i-th pivot.
the slack variable that decreases its flow in the i-th piv;t.
the costates corresponding to the slack variables of the i-th pivot.
the point reached after the n-th pivot.

the increase of flow in a slack link after pivoting.

Suppose we cannot perform the (n+l)-st pivot before the n-th one.
Clearly, this occurs only when there is at least one link common to the n-th

and (n+l)-st pivot cycles, such that the execution of the (n+l)-st pivot is

possible only after the n-th one. All such "critical" links must be in

opposite directions on the n-th and the (n+l)-th pivot cycles. We shall

contradict our assumption by showing that:

@@ 2@ 0

(b) before the n-th pivot there exists a cycle that permits increasing

y§n+1) while decreasing ygn) .

Consider first the situation before the n-th pivot, (see Figure 3.5).

Suppose that (k,j) 1is the first critical link on the (n+1)-st pivot cycle.

Clearly, since the link is critical it belongs also to the n-th pivot cycle.

Then follow the (n+l)-st pivot cycle from y§n+1) up to the node k and

then the n-th pivot cycle up to ygn). Clearly we can perform a pivot on

this cycle. Moreover, A("*l) < A(n) because if A(n*l) > A(") then, per-

forming the pivot corresponding to this cycle will give:
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+
) A (ty; (n-1) +

Iy D) M ey ea®ay < e 0Dy,
x. el
1

X, €A
i

thus, contradicting the optimality of the Hamiltonian (3.27a).

Next, consider the situation after the n-th pivot, (see Figure 3.5).

Let (k',j') be the last critical link on the (n+l}-st pivot cycle. Consider

(n)
2 ]

up to the node k' and from there on follow the (n+l)-st pivot cycle (for-

wards), up to y§n+1). Clearly we can perform a pivot on this cycle and hence

3 (M)

the following cycle: start at vy follow the n-th pivot cycle backwards

< A(n+1) for the same reasons as before,.

— n-th pivot cycle links; - - - (n+l)-st pivot cycle links; ... critical links

Figure 3.5 - Example of critical links.

Therefore we conclude, that A(n) = A(n+1) and as said already, before
the n-th pivot, there is a cycle including y§n+1) and ygn) on which a pivot
can be performed so that we can increase yfn*l’ (from zero) before the n-th

pivot while reaching a point that satisfies the equation of the Hamiltonian
(3.27a). This proves the induction step.

0O Assertion 3.4
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Now we contradict (3.27). By assertion 3.4, starting at Yp’ we can

reach points y* by performing a single pivot on the network. These points

lie on the (Ipu A)-face and also satisfy the Hamiltonian equation (3.27a),

namely: '

+ 1, -
) EI Ai(tp)y;‘b A (t )y;‘ = a, meeA . (3.31)
i

We check now the second Hamiltonian (3.27b) at the above points.

Notice that since we assumed that (3.27b) is optimal over ¥, it must satisfy:

L

+ 2, -
) EI ALY+ At Iy < 2, YxpeA (3.32)
ivp

From (3.31) and (3.32) follows that:

2, - 1 .-
Am(tp) < Am(tp), mesA . (3.33)
b~ But obviously, assertion 3.4 holds also for the second Hamiltonian (3.27b), hence:
Aty < A%T), Wx eA (3.34)
m p’ — m p’ m ) )

Thus, from (3.33) and (3.34), we have:
" 1,.-y _ ,2,,-
- Am(tp) = J\m(tp), VXmeA
We then conclude that the Bp-positive-face is unique and therefore the leave-

the-boundary costates are unique,

When only some of the states leave the boundary, we consider the re-

stricted Hamiltonian:

- - + -
H t ): t) = A, (t )y, + A (e )y,
() 2(8) xZI 13 ng 1 (85075
i~'p i"'p

with ch: Bp. But in order to satisfy the necessary conditions the optimiza-

tion must be global, namely:

- - RGP’pP |
Hyy(6) = HEE) D :

where
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A .
0 = cardinality of I
P 1y P
p & cardinality of L_ ,
p P

ag_+0
and the basis vectors of iR.p p are the elements of IP- Therefore the

1
values of the leave-the-boundary costates in the case of LPCIBp are identi-

cal to those corresponding to the case of Bp so that they are unique.
O Theorem 3.1.

Theorem 3.2

If the values of the costates corresponding to states travelling on
boundary arcs during the interval between two sucéessive junction times
1:1”1 and tp are equal to the leave-the-boundary costate values, then
every costate satisfies exactly one of the following conditions:

A.(t) = A7) =0, Vte (tp,t

i ) (3.35a)

p+l
A ==l A0 >0, Fre(mt ) (3.35b)

Moreover, in every feedback control region there always exists an optimal

control satisfying y > 0.

Proof

Every optimal trajectory in the state space is characterized by a

control switch time sequence (tf,tf_l,... when each

,tp+1,tp,tp_1,...),
switch time represents a transition between two neighboring feedback

control regions in the state space (see [Ml1]). The interval between two
successive switch times tp+1 and t_ is characterized by the set of
states travelling on interior arcs, Ip. Considering every possible control
switch time sequence insures that we have traversed every feedback control
region, thus covering the whole state space. To prove the Theorem we shall
consider a typical control switch time sequence, and we will prove by induc-

tion that the costate trajectories satisfy (3.35), and also that there exists
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at least one optimal control for which y > 0 within every feedback control
region. Notice that the existence of such an optimal control allows us to
consider only the set of trajectories for which there is no return to the

boundary of states (x = 0), backwards in time.

).

Now we proceed with the proof. Consider first the interval (tp,tP 1

Since {),(tg) =0, inst} (see [M2], pp. 25-26), at tg all costates

corresponding to the states in Lf are identical. Now, by Theorem 3.1, for

the costates corresponding to states on the boundary to be at their leave-the-

boundary values, we have to find the maximal set of states Af-l that satisfies:
Max{ § y.+ Iy l=Max [ vy =k(@Lp) . (3.36)
Y x.el. ' x.eA 1 Y x.el.?t
i °f i f-1 i f

Moreover, the enlarged Hamiltonian at t} must lie on Y in such a way that

all operating points in Yf-l satisfy equation (3.36). But as said before,

all costates corresponding to states in Lf have the same value at te, SO
that the enlarged Hamiltonian will contain the (If-lu Af_l)-face (3.36).

Hence Theorem 3.1 implies that

(i) A(tg) =0 forall x eB. /A,

f) are identical for all i such that

(ii) the values of all Xi(t
xieLfUAf_l,
where (i) follows from Assertion 3.3, and (ii) follows from Assertion 3.4 and
the fact that all costates corresponding to states in Lf have the same value.
Now, clearly there exists at least a point on the (If_lk)Ar-l)-face, satisfying
yi > 0, ineLf = If._1

(3.37)

Y.

(=0 ineB

f-1
Moreover, since we require that all costates corresponding to states travel-

ling on boundary arcs in the interval (tf,t f_1) be at their leave-the-boundary
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values, (i) and (ii) hold for all <te¢ (tf,tf_l), so that the point (3.37) is
an optimal solution for all rte (tf,tf_l) . Therefore we have:
Ai(t) = -1, ‘dxieLfUAf_1 = If—lu Ae y

. V (5.38)
Ai(r) = Ai(r) = 0, xier_l/Af_1

Yre (tete )

Now we perform the induction step: Consider the time interval
(tp+1,tp), and assume that the set of operating points Yp, contains at
least one point satisfying:

y; 20, ineIp
(3.39)

y. =0, Vx.eB
i i p

We denote by Ap the maximal set of states satisfying

Max{ J y.+ [ y.}=k() .
x.eI * x.eA P
i~7p i~7p
Keeping the costates corresponding to states in Bp at their leave-the-

boundary values at every instant on the interval will résult by Theorem 3.1 in:

Ai(r) = 0, YxieBp/Ap , (3.40a)

A (x) =
i(1) Aj(r) ineAp, xjelp. (3.40Db)

Moreover, from the existence of a point satisfying (3.39) during the entire

interval follows that:

A (1) = -1, inerp
(3.41)

Y re(tp.t )

P+l

therefore from (3.40) and (3.41) we have:
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A (1) = A (0) =0, ineBp/Ap , (3.42a)
ii(r) = -1; A (1) >0, ineIp\)Ap , (3.42b)
Vee e t)

where Ai(r) > 0 follows from Assertion 3.1 of Theorem 3.1.

Now consider the boundary junction time tp where we allow the set

of states Lp to leave the boundary, so that Ip-l = IPU Lp. Noting that

we have kept all costates corresponding to states in Bp at their leave-the-

boundary values during all the interval (t ), we realize that at t

p’ “p+l
(3.40) is satisfied, namely at the junction time the Hamiltonian does not

change its orientation. Therefore in order to reach points in YP 1

a point in Yp), we have to perform pivots on the subnetwork corresponding to

(from

states in IPUAp (see Figure 3.6), increasing in this way the flows on the
links corresponding to Yis where X, € Lpﬂ Ap’ and then to increase the flows

on the links corresponding to vy,, where x e Lpf\(Bp/Ap).

Fi e 3.6 - Network representing transition between Y to Y .

s kA




AR S

oo s

- §3 -

As a result of the increase of flow on a link yi corresponding to an
X, € Lpn Ap’ there is a decrease of flow on some link yj corresponding to an
xJ. € Ip’ however, it is clear that we can always increase the flow on yi in
such a small amount that yj will still remain nonnegative for all x. ¢ IP.
Moreover, the increase of flow on links Y5 corresponding to x; € (Bp/Ap)n Lp

does not result in decreases of flows on other slack links so that Yp-l will
contain points satisfying
Y5 >0 inelp_l ,
(3.43)
Yy =0 Vx;eB,

Now Ipc Ip-l so that when maximal flow is achieved on the network

corresponding to Ip_1 (i.e., network with slack links yi for all xi € Ip_ 1

only), all minimal cuts of Ip will be filled. In addition, the sets Ip

and IpU A have the same minimal cuts, therefore:
ACA L ’ 3.44
o p-lU o ( )
where Ap_1 is the maximal set of states satisfying

Max{ ] y.+ ] yi}=k(1p_1).

y xielp-l xieAp_l

Now, from the existence of a point satisfying (3.43), and from the

same considerations as in the interval (tp'tpﬂ)’ we have
Ai(t) =2, (1) =0 ine Bp-I/Ap-l
. (3.45)
A0 = -1 A (1) > 0 Vx, e LaVA
t 3
Ve p-1tp)
Moreover, since Ipc Ip._1 , from (3.45) followq that
A (x) = =13 A, (1) > 03 Wx, el ,
i 1 i°7p (3.46)

V TE (tp-l'tp) »




- 54 -

and since ch Ip-l’ from (3.44) and (3.45) follows that:

iim = -1; ii(r) >0, ineAp,
(3.47)
Vre (tp_l,tp)

Therefore, equations (3.39), (3.42), (3.43), (3.46) and (3.47) provide the

induction step that proves the theoren.

O Theorem 3.2.

The costate trajectories (3.35) satisfy the necessary conditions (which
are also sufficient) derived in [M2]). Moreover, th&se trajectories were

obtained by checking at every moment the global Hamiltonian, thus insuring
that values of the costates corresponding to states on the boundary can always

be found such that the solutions obtained by considering only the restricted

Hamiltonian are also globally optimizing solutions. The above arguments yield

to the following corollary:

Corollary 3.2

Any solution to the constrained optimization problem (see [M2], p. 64)

is also a globally optimizing solution.

O Corollary 3.2.

Theorem 3.3

The set of optimal controls does not switch between boundary junction

times; that is, there are no break points between boundary junctions.

Proof

Consider the time interval (tp.tp *1) and denote:

Max ) A (D)y, = a(1)
4 xielp

Now consider the time 11 € (tp,t

p ¢1). The set of operating points is given by
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o ;
Yp(ty) = {ye V’/( EI A (7))y; = a(r)INR P, (3.48) ?
i7p

<]
where the basis vectors of R P are the elements of Ip.

Recall that all points in (3.48) satisfy

Y oy, =x(1) . (3.49
x.el 1 P . )
R i’p

Now consider the time rze (tp,t where t_ = 1. +At. The set of operat-

p*1), 2 1
ing points is given by

o
= = p
Yp(‘cz) {er/x ZI A (t)y; = a(r,)IAR . (3.50)
i’p

But every point in (3.50) satisfies (3.49), and also by equation (3.42b) we
F have
4 i 1, V¥x el
i i (1) = -1, x el
Yre(r,(t,)
g : Therefore:

Max ] A (t))y., =Max{ J A (t)y.+at [ y.} =Max ] A (t.)y.+Atr k(I) .

Y x.eI ! 27 Y x.el 1! 1771 x.el ! Y xel 1! 1774 P.

i’p 1°p i p 1 p

A Thus :

INHER NI

so that the set of optimal controls does not switch between boundary junction

times.

O Theorem 3.3.

Theorem 34

There is one subregion per region with respect to any set of state vari-

ables leaving the boundary.

Proof

Consider the feedback control region Rp constructed from the set of

T2 PR N - -
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optimal solutions Yp on (-=,t ). Also, let Lp be the set of state vari-

p*l

ables which we choose to allow to leave from Rp backwards in time, where

ch Bp. According to the definition of subregions (see [M2], p. 57), we must
show that the state variables in l..p leave with the same set of optimal controls
from every point of Rp' Recall that by Theorem 3.3 the optimal trajectories
associated with t}.le state variables in Lp, leaving Rp. do not experience

a break as tixhe runs to minus infinity, so that to prove that there is one sub-
region per region is equivalent to showing that the set of optimal controls
associated with the state variables in I.p leaving the boundary is the same

for every boundary junction time tp € (-=,t Note that we need not be con-

p+1)'
cerned with the common breakwall sequences (see [M2], p. 56), since by Theorem 3.3
there are no breakwalls. Now consider two different boundary junction times,

t. , t_ ¢ (-w,tpﬂ) and assume that t_ > tp . By Theorem 3.3 we have that

Py P Py 2
v cp«rop
= y A, .= R , 3.51
Yp1(tp ) = {xe ¥/ g i )% a(tpl)}(\ (3.51)
p-1 Ap-l
and
) yNRP P (3.52)
Y . (t. ) ={yeVY/ A (t_ )y, = a(t_ ) .
p-1"p = 1 py, 1 P
2 1L.1UA, 2 2
where -
a(t) = Max X )\i(-r)yi .
y Ip_luAp_1

o_+0
The coordinates of R PP are the elements of Ip-l’ and Ap-l is defined

as in Theorem 3.2.

Now, by Theorems 3.2 and 3.3 we know that
A () = -1, inerpu A,
A (1) = 0, inch/Ap
VT € (-.'tp’l)

where Ap is defined as in Theorem 3.2.
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Hence:
A (t = A_(t = 0, . I A I VA R
i ¢ Pz) l( Pl) Vxle ( p_IU p_l)/( pY p)
\
A (t = A (t +(t_ -t ), x.el Ua
(80 = 2 (8 ) (5 -ty ) Vx e LUA
therefore
Max ) A (t_ )y. = Max{ ) A (t Yy, v (t -t ) )
1 p,1 1 pye P, P
VoL, UA, 2 VoI UA 1 1P A
= Max T Aty + (-t k(L ) ,
1" p,"1 P, P p-1
y Ip-IUAp-l 1 1 f2
so that
Y (t =Y t s
p-1 P1) p-1¢ pz)

then the set of optimal controls associated with state variables in L

)-

leaving the boundiry from Rp, is the same for every tp £ (--w','cr”1

O Theorem 3.4.

yi}
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Section 4

THE ALGORITHM

This section is devoted to the description of a simplified algorithm
for building the feedback solution to the minimum delay dynamic message rout- (
ing problem for single destination networks with all unity weightings in the
cost functional. The simplifications obtained arise from the special proper-
ties of these kind of networks, as discussed in Section 3, and from the new

approach to solve the linear programs presented in Section 2.

In Part A we state the algorithm while explaining its steps. In
Part B we present a method for obtaining all optimal solutions of the linear
programming problems required by the algorithm and finally Part C brings an

example that provides a good insight of the performance of the algorithm.

A. Statement of the Algorithm

Operation 1

List all possible trajectories in the state space, by writing all pos-

sible sequences of states leaving the boundary backwards in time.
0O Operation 1.

Recall that every optimal trajectory in the state space is character-
ized by a control switch time sequence. Each switch time represents a transi-
tion between two neighboring feedback control regions. Now by Theorems
3.2 - 3.4 there are no returns of states to the boundary, there are no bre#ks
in the optimal controls between junction times and there is only one subregion
per region. Therefore every trajectory is characterized only by departures
of state variables from the boundary, the boundary junction times might be

arbitrarily taken and between two successive boundary junction times the set




of optimal controls does not change. Thus, Operation 1 takes in%c aciount a.l
possible trajectories in the state space, sc that the construct:on cf reedback
control regions based on these sequences 1nsures a complete cc.ering of the

state space. Such a typical sequence looks as follows:

{\Lf},th"l}’ '.’{Lp‘l},tL }’tLP‘

P l}’”"il‘f-nvli

The number of possible sequences_Q(n) 1s given by (see (El], p. 68).

U ir) n
Qn) =} DT (1)
— r=1 1%c S
Notice that the complexity of Operation 1 13 of the crder of nn, :0

that clearly the algorithm 1s implementable only for "small'' networks

Example 4.1

Consider a network with three state variavles X1s Xy and Xz The

sequences are.

te te te
1 X X, X3
2. Xy Xg M)
3. Xy (X55%4)

4. X, X X3
5. Xy Xs X
6 X, (x5%3) -

7 Xq X %
8 Xz * X, Xy
9 X+ (X)5%5)

10. (X{5X,) Xq

11. (xy5Xg) ) | )
12. (XZ’XS) Xy

13 (X{ sXy5X3) - 3 Exafip.e 4.,
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Operation 2

Derive the networks corresponding to every possible combination of
state variables leaving the boundary. Apply the algorithm of Maximal Flow to
the networks and find the corresponding flows.

O Operation 2.

From Operation 2 we obtain the first optimal solutions to the linear
programs (as explained in Parts B and C of Section 2). Also, the operation
provides the essential tools for obtaining the simplifications of the algor-

ithm as will be shown in Operation 3.

The number of networks for which the Maximal Flow Algorithm is to be
applied is 2™1. The complexity of this operation is therefore exponential
in the number of nodes.

In Appendix B we provide a computer program in Fortran for finding
the maximal flow in these networks, based on the algorithm of Edmons and
Karp (see [H1]).

Exanple 4.2
All the possible combinations of states leaving the boundary in

example 4.1 are:
{xl},{xz},{xs},{xl,xz},{xl,x3},{x2 x3},{x1,x2,x3}
O Example 4.2

Operation 3

For every sequence of state variables leaving the boundary listed in
Operation 1, and considering the results obtained in Operation 2, execute the

following steps:
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(a) Consider every set Lp of the sequence and check if there 1s a sub-
set of states B such that B< Lp, and such that there is a set B'
where Ipu B ¢ B', and such that the same value of maximal flow

corresponds to both sets, IpU B and B'.

(b) 1f (a) is satisfied, check 1f in a set Lq of the same sequence,

2 where q < p there is at least one state variable xj such that
3 x, € B'/(IU B).

i 5 €B'/(1UB)

¢ (¢) If (b) is satisfied, erase from the list of Operation 1 the sequence

being currently checked.
. O Operation 3.

In order to justify Operation 3, consider first the following notation:
Tgahllgphe s h (T ®),.en (4.1)

The sequence (4.1) represents all trajectories in the state space character-
ized by the sets of states travelling on interior arcs in every time interval.
In (4.1), the notation {Ip_l(B)} means that the set of states B is such
that B < Lp, that is, the states in B leave the boundary at tp. Notice

that BcI ..
p-1

Now consider the following sequence satisfying (a) and (b):

S TRRNS S Pt SPLC D FRPP e IR T (¢ SRYC S DN SPY IS (4.2)

P
where x; eB'/(IpU B) .
Now consider the following sequence:*

S PRPIRRPLS S0 RN SR D PRPPPIC AV 1S PP I S FRPRIS (4.3)

q-1

The only difference between sequences (4.2) and (4.3) is that in (4.2),

xJ. leave the boundary at 1:q while in (4.3) xj leave the boundary at tq*l‘

Notice that the existence of a sequence as (4.3) is insured since Operation 1 J
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requires the listing of every possible sequence.

We claim that all feedback control regions constructed from sequence

(4.2) are also constructed from sequence (4.3) so that sequence (4.2) is redun-

.

dant. The reasons for that appear in the following arguments:

By the considerations of Part D in Section 2, we know that in order to

find all optimal solutions (to construct the corresponding feedback control

*

TR
2

-

region) corresponding to the time interval (tg+1’tg)’ we find all optimal

2 g S50

-t

leaving the boundary, and among

solutions corresponding to the states in Ig

these solutions we choose those that maximize the expression
97

Now it is-not difficult to see, that by Theorem 3.2 the costate values in both

T oa.(t

x.el 1
1 g

sequences (4.1) and (4.2) are the same at all times. Moreover, note that if
all optimal solutions corresponding to the states in IpU B leaving the boundary

are also optimal solutions to the problem corresponding to the states in B'

leaving the boundary, then all optimal solutions corresponding to the states in

IpU BUD 1leaving the boundary (for some set of states D) are also optimal

solutions of the problem corresponding to the states in Ipv BVDVE leaving

the boundary, where ECB'/IpU B. The above is easily seen by noting that all

minimal cuts corresponding to IpU B are also minimal cuts of the network cor-

responding to IPU BUE, therefore all minimal cuts corresponding to IpU BUD

are also minimal cuts of the network corresponding to IPU BUDVE.

Now returning to sequences (4.2) and (4.3), we have that

2
q

denote the sets of states travelling on interior arcs in

1
=1 . 4.4
I qU xJ s (4.4)

1

and I
q

the time interval (tq+1’tq) in sequences (4.2) and (4.3) respectively).
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Moreover we can write ‘
it . (Il/I UBJLIL VB , (4.5) —;
a “qp P |
so that from (4.4) and (4.5) we have
1“= a/1uBuUI UBUX, . (4.6)
q qQ P P J

But from the above reasoning all optimal solutions corresponding to (4.5) are 3
also optimal solutions of the problem corresponding to (4.6), moreover:

2 1
I =1
g 4

Therefore the sequence (4.2) is redundant.

» 78249

Example 4.3

If in example 4.2 we obtain the same maximal flow value in the cases
corresponding to the sets of states x; and {xl’XZ’XS} leaving the boundary,
then we erase from the list of example 4.1 the sequences numbered (1), (2), (3),
4), (7)), (10) and (11).

O Example 4.3.
Operation 4

For every state variable combination Lf leaving the boundary at t £
for which there is not a combination L% such that Lg = Li_. , and the maximal
flow values corresponding to both combinations are equal, find all the optimal
basic solutions of the corresponding linear programming problem starting with
an optimal (extended) basic solution as explained in Parts B and C of Section 2,

and using the algorithm provided in Part B of this section.
O Operation 4.

The results obtained from Operation 4 are the basic data needed for con-
structing feedback control regions (the construction is carried out in Opera-

tion 5).
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Operation 5

For every remaining sequence (after execution of Operation 3) from the

list of Operation 1, carry out the following steps for every boundary junction

time tp, in a sequential order, starting at te

z (a) Set

3 ORI S NN
% Vore (et

A A (8 =0, \Txi:;lap_1
Voot
with

; A () =0, Vix [ieh}
p (b) 1

Set arbitrarily t -t =
Y 5%

From among all solutions {y*} obtained in Operation 4 with Le=1

p-1
choose those that maximize the expression:

oA (e )y,

it p-1771
xieIp-l
Transform the solutions obtained in (c) to the set of rays Vp-l (see

[1], p. 58) and construct the convex polyhedral cone:

Rp‘l

where Co( +} denotes the convex hull.

= CB LV DR

Consider all sequences that are identical to the current sequence

until the current time interval (t p-l’tp)' The costate values of
such sequences in interval (tp_l,tp) will be identical to the co-
state values corresponding to the considered sequence, and the cor-

responding feedback control region will be built only once. This
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insures that we avoid multiple construction of the same control region.

0O Operation S.

Step (a) follows from the costate trajectories depicted in Theorem 3.2.
Notice that in the sequences left after Operation 3, the costate A; starts
to change only from the boundary junction time in which 1ts corresponding
state leaves the boundary, so that the calculation of the costate values is
an easy task. Step (b) follows from the fact that there is only one subregion
per region with respect to any set of state variables leaving the boundary (as
prpved in Theorem 3.4), so that we may arbitrarily choose the boundary junction
times. Step (c) follows from Part D of Section 2. Step (d) follows from the
Constructive Dynamic Programming Algorithm stated in [M2]. Finally, step (e)

is a simple conclusion that saves superfluous computational work.

B. The Method for Finding all Solutions

to the Linear Programming Problems

One of the major problems in the implementation of the algorithm
described in Part A of this section arises from the need of finding all solu-
tions to every linear program required in Operation 4 of the algorithm. In
geometrical terms, the problem is to find all the extremal points of the con-
vex polyhedron formed by the intersection between the enlarged Hamiltonian
and the y-constraint figure lying in the positive orthant of the y-space.
Fortunately, the above linear programs are in general highly degenerate so
that as it was clarified in Part C of Section 2, the number of linear programs

we actually have to solve is greatly reduced.

The problem of finding all solutions to linear programs has been
widely investigated. See for example [B1], [Chl], [Ch2], (M4], (R1]. In (B2],
we find a report on computational experience gained using the algorithms

: )
dame pms i
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presented in [Chl] and {Ch2], as applied to optimal routing problems. From
this report it is seen that even for very small size networks the amount of
computation and memory required is excessive, and also the numerical sensitivity

of the algorithm is extreﬁxely high.

We proceed now with the description of the method to find all the solu-
tions of the linear programs that we propose and later we shall discuss its
advantages. The algorithm is based on the method of pivoting on networks.

For a review of this method the reader is referred to Appendix A.

Starting at an optimal extended basic solution, the algorithm picks a

nonbasic link and looks for the cycle formed by basic links and the considered

nonbasic link. There always exists such a (unique) cycle since every extended
basic solution corresponds to a spanning tree in the network. In order to
find the cycle the algorithm utilizes a labeling technique that will be
described later on. After finding the cycle we perform a pivot on it, reach-
ing in this way either a new extremal solution or, if the cycle is degenerate,
another representation of the original extremal solution. If the degeneracy
is of a high degree, we may find with a single pivot several different representa-
tions of the extremal solufion. Every new solution or representation obtained
is numbered and kept in memory if and only if it does not exist there already.
The above process is performed for all nonbasic links corresponding to every
solution and/or representation kept in memory until it is not possible to
reach a new solution or representation. In this way we insure that at the
end of the process we had reached all optimal solutions. Since we are not
concerned with different representations of extremal solutions when construct-

ing feedback control regions at the end of the process, we can delete these

representations retaining only one representation per extremal solution. In
order to start the process, we reach an initial extended basic optimal solution ‘

as depicted in Parts B and C of Section 2.




- 67 -

Now, to understand the need of searching also the different representa-

tions of every extremal solution, let us consider the following example.

Example 4.4
3 Given the network depicted in Figure 4.1, the problem is to find all

optimal solutions corresponding to all states leaving the boundary.
=2

c32=2

Figure 4.1 - Network of Example 4.4

After finding the minimal cut of the network (recall that to find a

first optimal basic solution, we add a new node (the source) and links with
no capacity constraints connecting the source with every node of the network,

and we apply the maximal flow algorithm), we choose the first basic optimal

solution shown in Figure 4.2-a. From this solution and by pivoting on the

cycle corresponding to the nonbasic link (3,2), we reach another extremal

solution as depicted in Figure 4.2-b. Note that from the first solution,
pivoting on the cycle corresponding to the nonbasic link (s,2) does not lead
to a new solution but just to another representation of the first optimal
solution. Clearly, from the representation of the extremal solution of

Figure 4.2-b we cannot reach a new extremal solution. Only starting at the

representation shown in Figure 4.2-c can we reach the new extremal solution

depicted in Figure 4.2-d.



TN AT

e SR,

U~

v,,‘-.imv.,.-m PP RPN

SN,

- 68 -

(a) (d)
- - - - nonbasic link
basic link
r;
0 9
Y2
(-~ a=- -CA—-*:— -3)
2 0
(c) @

Figure 4.2 - Obtaining extremal points in the network of Example 4.4.

O Example 4.4.

Now we describe uie labeling technique used by the algorithm to find

pivot cycles. First we assign a number to every node and link in the network.

For example see Figure 4.3:

R ey e o 2o prope A Sy e PP
- = H e T Y . ; e T A 0. I




e

. R T

- 69 -

Second, we define the following arrays:

C(1) = Capacity of the link I.

F(I,J) = Flow on the link I at the J-th solution.
BASE(I,J) = Type of the link I (basic or nonbasic) at the J-th solution.
LOUT(I) = Exit node of link I.
LIN(I) = Entrance node of link I.
where:
1 1if the 11nk I is basic
BASE(1,J) =

0 if the link I is nonbasic

Now if link K 1is nonbasic, in order to find the pivot cycle we search the
arrays LOUT(I) and LIN(I) and we find all the incident links to node
LIN(K) (where LIN(K) is the entrance node of the link K). After find-
ing all these links we consider only those that are basic, and for every one
of them we carry out the same procedure until we obtain a basic link entering
(exiting) into (from) node LOUT(K). To every link searched in the above
procedure, the number of the preceding link of the cycle is matched so that
at the end of the procedure a well-defined cycle is obtained. After finding
the cycle, and by checking the arrays C(I) and F(I,J) we obtain the maximal
change of flow on tﬁe cycle and we perform the pivot. As said before, when
the cycle is degenerate, we reach all possible different representations by
performing ''dummy'’ pivots, that is declaring the nonbasic link as basic, and
the basic link that does not allow to change the flow as nonbasic.

Standard labeling techniques assign numbers only to the nodes of the
network so that the links are identified by a two-dimensional array (I,J),
where I is the exit node of the link and J its entrance node. However,

BREES
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note that in order to use this technique we must define in our case two arrays
that are three-dimensional, the first accounting for the flows on the links,
the second for the type of links. Moreover a two-dimensional array for the
link capacities is needed, thus making use of an excessive and wasteful
amount of memory, especially when the number of solutions and representations
is large. Clearly, by defining only two-dimensional arrays (as we do) we
save a large amount of memory. Notice also that, when finding all the solu-
tions to the linear programs by means of pivoting on networks, every solution
or representation is identified by a solution vector and a link-type vector
instead of a tableau (as is done when utilizing simplex methods) saving again

a great deal of memory.

The main problem of the method is that we do not know a priori the
nunber of solutions and representations of the line;r program, so that we do
not know the dimension needed for the arrays that will contain the solutions
or representations. Truly, we can find an upper bound to the number of solu-
tions and representations since every basic solution corresponds to a spanning
tree and it is possible to calculate the number of spanning trees in the net-
work, however, not every spanning tree corresponds to a feasible basic solu-
tion. For example, in the network depicted in Figure 4.4 a non-feasible span-

ning tree is shown.

- - - - nonbasic link
basic 1link

Figure 4.4 - Example of a non-feasible spanning tree.
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Therefore, in general, the number of feasible solutions is less than

the number of spamning trees, and for practical purposes the dimension of the
arrays having a coordinate defining the number of solutions and representa-

tions is estimated and fixed accordingly.

We present now ‘'several examples that will test the efficiency of the
method. All examples apply to the case when all the states leave the boundary
(that is, the case in which we obtain the maximal number of solutions) and
they were solved by means of a Fortran computer program (see Appendix B)
based on the method described above. All programs were run on an IBM 370/168

computer, and for every examplé the maximal memory region provided was 512K.

In Figure 4.5 we show the tested networks with the corresponding

numbers of optimal solutions and representations, and the CPU time consumed.
3

Number of solutions: 24

Number of solutions
and representations: 48

CPU time: 1.78 sec.

Number of solutions: 20

Number of solutions ;
and representations: 58 f

CPU time: 1.59 sec. ;




Number of solutions: 60

Number of solutions
and representations: 156

CPU time: 5.41 sec.

Number of solutions:

Number of solutions
and representations:

CPU time:

Number of solutions:

Number of solutions
and representations: 184

CPU time

Figure 4.5 - Example of finding all optimal solutions.

From the examples of Figure 4.5 we obtain an insight into the change in the

number of feasible spanning trees when changing capacities of some links (see

4.5a and 4.5b) and the great increase in the number of feasible spanning

trees when adding a single link to the network (see 4.5b and 4.5c, 4.5d and

4,5e).
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Note that since the capacities are integers and the only arithmetical
operations in the method are additions and substractions, no numerical sensi-

tivity problems arise.

Now we anal .ze briefly the complexity of the method for finding all
optimal solutions. Consider first the non-degenerate case, that is, the case

in which every optimal solution satisfies:
yi>0, i=1,2,...,n, 4.7)

where n is the number of nodes in the network. Denote also by & the
mumber of links in the network. Clearly, if (4.7) is satisfied at every
optimal solution, the links corresponding to the slack variables "y are basic,
and the remaining links are non-basic. Since the flow on a non-basic link
(i,j) must be only zero or <; T the number of optimal (basic) solutions

is 2(9.-n) . This explains the great increase in the number of solutions when
adding a single link to the network. In the degenerate case we can only
estimate an upper bound for the number of solutions and representations. This
upper bound is given by multiplying the number of spanning trees of the net-
work by 2(9"11) . The conclusion arising from the above arguments is that
owing to its exponential complexity the method can actually be implemented

only for relatively small networks.

C. Example of Feedback Solution to the Dynamic Routing Problem of a
Single Destination Network with all Unity Weightings in the Cost Functional

In order to illustrate the algorithm described in Part A of this section
we present here an example of a four-state variable network for which we execute

some of the operations of the algorithm. The network is depicted in Figure 4.6.
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Figure 4.6 - Network to illustrate the algorithm.

Operation 1

In this operation we list all possible sequences of states leaving

the boundary. Since there are four states, we obtain Q(4) = 75 different

sequences.
te3 te2 T te
Xy Xq X, X
X3 "4 X2 X
X2 X X3 X
Xy ) X3 q
X X3 X4 5
X3 X2 4 X
X4 X3 X )
X3 X4 e X
%y ] X3 X
X %3 X3 %2
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Xq X91X, X
Xz »Xy X4
xl xZ,x3 X4
X2 %3 %
Xz5%, X, X
X20%4 *3 g
X3 Xy !
X35X, X X
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X, X X3
% % "3
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X X3 4
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Operation 2

Here we calculate the maximal flow values of the networks corre-
’ _ sponding to all possible combinations of states leaving the boundary.
This is carried out by using the Maximal Flow computer program provided

in Appendix B.

-

In the case where all states leave the boundary, there is no need

by o ) s
A

to apply the computer program since, as stated in Part B of Section 2, the

solution is trivial (see Figure 4.7).

S N Minimal Cut

Figure 4.7 - Network representing all states leaving the boundary.

The solution is:

up 4 = ui6 = ci6 s i=2,3,4,5

U 0 , k=2,34,5

The value of the maximal flow is 9.
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The links belonging to a minimal cut are marked by asterisks (*) in

each of the above programs.

Now we summarize the results we obtained:

D k(D)

4 X1 5X)5X35%y 9 E

.

| X] 9%y Xg 9
- xl,xz,x4 9

) X%, 9 E
; xl,xg,x4 8
3 X) %5 8
’x4 7
xl 7
. Xy5Xg,X, 6
' X, Xz 6
XZ,X4 6

) 3 §

!

XgsX, 3 :

Xz 3 :

X, 2 f

This table will assist us in the execution of Operations 3, 4 and S.
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Operation 3

In this operation we erase redundant sequences from the list of Opera-
tion 1. The Operation is made by searching all the sequences of the list and
by checking if the conditions of redundancy are satisfied considering the

results obtained in Operation 2.

In our example we obtain that only 18 sequences from the 75 listed in
Operation 1 are nonredundant. These sequences are marked and numbered in the

list of Operation 1.

Operation 4

Here we find all basic optimal solutions for all combinations of
states leaving the boundary. By the summarizing table of the maximal flow
values we realize that it is enough to find all the solutions for only five
combinations of states. Notice that in the cases where only one state leaves
the boundary the solution is unique, and it is given by the result obtained
in Operation 2. The five networks for which we have to find all optimal
solutions correspond to the largest combinations of states (containing at

least two states) having different maximal flow values.

Using the results of Operation 2 (where we localize minimal cuts) and
by the considerations of Part C of Section 2, we obtain first basic optimal

solutions to every one of the networks, as shown in Figure 4.8,

| SEPUFINPEICREEY

ke




G o
s «

(d) : (e)

Figure 4.8 - The first optimal solutions

Applying the method for finding all the solutions described in Part B
of this Section (the computer program implementing it is provided in Appendix B),

on the above networks, we obtain the following results:
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Operation §

In this Operation, the feedback control regions are constructed with
the aid of the results of Operation 4, and by calculating the costate values
in every interval of every (non-redundant) sequence. In this example we re-
strict ourselves to finding the costate values since the remaining steps do

not represent interesting features of the algorithm.

As we said in Part A of Section 4, when developing the algorithm it
turns out that the calculation of the costate values is almost trivial for the
non-redundant sequences. In the following table we rewrite these sequences
where under every interval we write the corresponding costate vector
(AI,AZ,13,>.4). We have taken arbitrarily tp,’1 - tp = 1, and the states on
every interval correspond to I o’ that is states travelling on interior arcs.

teg te3 te2 g1
XpXp¥p¥y | %% % %y 4
(3,1,2,4) (2,0,1,3) @,0,0,2) (0,0,0,1)
X1 XgsX5e %Xy | Ko X5e%y X3:%4 *4
(2,1,3,4) (1,0,2,3) (0,0,1,2) 0,0,0,1)
Xy 9XpsX5,X,y | XgsXgsX, XgX, X4
1,2,3,4) 0,1,2,3) (0,0,1,2) (0,0,0,1)
X1sXprX30Xg | X0X30%y X
(1,3,2,2) (0,2,1,1) (0,1,0,0)
X1 sXgX3,X, | XgyX3,Xy X4
,2,2,3) (0,1,1,2) (0,0,0,1)
X10X90X30Xy | X10X30%y X4
2,1,2,3) (1,0,1,2) (0,0,0,1)
. i ———— .

T
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"i 1Xg1X3:X,
,1,1,3)
X1 sX99X30Xy
a1,1,2,3)
X 9% 5X55Xy
,1,2,3)
X 9Xp:X3Xy
(2’1’3’ 3)
X9 Xp9X35Xy
1,2,3,3)

xl,x4
(1,0,0,2)
XS,X4
(0,0,1,2)
X12X30%
(2,0,1,2)
X} »X3,X,
(1,0,2,2)
XpsX30%y
(0,1,2,2)
XX X3 %y
1,2,1,1)
X0 X2 X30%
(1,1,1,2)
X1 »XgsX3sXy
(2,1,1,2)
X10X20X30%4
,1,2,2)
XX X3 %
(2,1,2,2)
X)1X2:X3:%y
1,2,2,2)

(0,1,0,0)
X4
(0,0,0,1)
X%y
(1,0,0,1)
Xz:%y
(0,0,1,1)
X1 X304
(1,0,1,1)
XgsX32Xy
(0,1,1,1)
X10Xp0X30%y
1,1,1,1)
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Section 5

CONCLUSIONS

We presented a new approach for the construction of a feedback solu-
tion to the minimal delay dynamic message routing problem for single destina-
tion networks with all unity weightings in the cost functional. The approach
seems to be the most appropriate one for tackling the problem, since it fully
exploits the special structure of the constraints matrix and also provides a
physical meaning to the problem by working in a framework of networks rather

than in an abstract mathematical one.

4
A A

Several improvements have been achieved compared to previous results.
The first is the great reduction in the number of linear pfograms to be solved
by taking advantage of the high degree of degeneracy that in general character-
izes this kind of problems. The second is the derivation of a suitable method
. for finding all solutions to the linear programs, that does not require the
application of simplex techniques to achieve a first optimal solution but only
the application of a simple algorithm of maximal flow. Moreover, the method
reaches all the remaining optimal solutions by pivoting operations on a net-
work, saving in this way a great amount of computer memory. The third improve-

ment achieved is that the new approach provides the tools for analyzing the

R T

complexity of the problem, giving us an idea of the number of computational

steps required for cbtaining the feedback solution to a given network.

Further research is required for Operation 1 of the algorithm. Since

not all sequences listed in the above Operation are used for constructing

feedback control regions, the question is whether a method can be provided to

avoid the listing of those sequences not contributing to the construction of
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the feedback solution. It also seems that the algorithm may be applicable in
the case when constant inputs are present. However, further research is needed
to investigate the influence of these inputs on the different Operations of the
algorithm.

Finally, it also remains to extend the application of the approach to

the more gemeral case of multidestination networks.
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Appendix A

§ Basic Concepts of

Graph Theory, Maximal Flow and Linear Programming in Networks

1. Basic Definitions

Directed Graph: A set of nodes N = {1,2,...,n} and a set of directed

links L = {(i,j),k,2),...,(v,w)} connecting pairs of nodes of N.

Path: A series of different nodes in the graph where between two

successive nodes of the series there is a link comnecting them.

: ' Cycle: A path to which a link is added connecting the first and the

last node on it.

Connected Graph: A graph in which there is at least one path between

any pair of nodes.
Tree: A comnected graph not containing cycles.
Spanning Tree: A tree containing all the nodes of the graph.
Network: A connected graph in which to every link (i,j) corresponds

a positive integer ik called the capacity of the link.

2. Maximal Flow on Networks (see [Hl1],[B3]).

We define two special nodes of the network; the first is the source
(s) and the second the destination (d).

The concept flow on the network is defined as follows: A set of non-

negative integers Uiy is called flow in the network if the following con-

straints are satisfied:
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-f if j=s
Euij-Eujk. 0 if j #s,d (A.1) :

f if j=4 .
0<u,.,<c.., V(,jleL . (A.2)

The Maximal Flow Problem is defined as:
Maximize f (A.3)
such that (A.1) and (A.2) are satisfied.

A Cut separating the nodes s and d is denoted by (X,X) and
defined as follows:

X,X) = ((i,j) el / ieX,je ¥} ,

where X is a set of nodes in the network containing the node s but not

the node d, and X = N/X.

The Cut Value is

C.:
jgx 1
jeX

A Minimal Cut of the network is defined as a cut having minimal value.

Theorem (The Maximal Flow-Minimal Cut, (see [F1]))

The maximal flow in a network, between the source and the destination

equals the value of a minimal cut separating the source and the destination.

From the above Theorem follows that if (&,RM) is a minimal cut of
the network, then at maximal flow we have

U = Sy VAGLI/ieXuie Xy

3 " L 0 ‘q‘{(k,z)/ke .'iM,le)sd} .
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3. Minimal Cost Network Flows (see [B3],[H1]). -

Consider a network having n nodes and m links. To every node i
in the network corresponds an integer bi that accounts for either the
"supply" of flow to the node (if bi > U), or the "demand" of flow from

the node (if bi < 0). Assume also that the total supply of flow to the

n
network equals the total demand from it, that is | b, = 0. To every link
i=1

(i,k) in the network corresponds a number Yij > 0 that expresses the cost

per wnity of flow on the link.

The Minimal Cost Network Flow Problem is the determination of the

flows on the links such that the supply of flow to the network satisfies the
demand of flow from it at minimal cost. Mathematicaly the problem is stated

as follows (the summations are taken for existing links):

n n
Minimize N Y
izl 521 Yijij °

i'l,Z,...,n ’
iuij icij’ V(d,j)el

The constraints (A.4a), written in vector form, are Au=0>b

Now we investigate the structure of the constraint matrix A: Every
row of A corresponds to a node and every colum to a link, thus the dimen-
sions of the matrix is (nxm). Every colum of A has only two non-zero
elements, +1 in the i-th row and -1 in the j-th row, where i and j are
the exit and entrance nodes of the link, respectively. The rank of the A-

matrix is (n-1). To see this, note that every row in A accounts for the

flow conservation on the corresponding node, so that the row corresponding to
node T is given by the sum of all the remaining rows of A with minus sign,
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These remaining rows are clearly independent since the deletion of the r-th

row fraom A leaves at least one column having only one non-zero element.

Now we shall deal with the linear programming problem (A.4), when the
; links have no capacity constraints, that is we require only uij >0. Ina
linear programming problem, the variables corresponding to some of the colums
of the constraint matrix are called nonbasic variables, or independent vari-
ables, because their values are determined arbitrarily. The values of the
remaining variables (the basic or dependent variables) are determined by
means of the non-basic variables and the constraint matrix. The colums cor-
responding to the basic variables form a square matrix B, called the basic
matrix, and if these colums are chosen such that they are linearly inde-
pendent, and if the variables not associated with columns of B are set equal
to zero, then the solution of the system Bu = b is unique (since B 1s non-
singular), and the above solution is an extreme point of the constraint figure.
In the case of problem (A.4), it is easy to see that from all links incident
to a node, the flow on one of them cannot be determined arbitrarily but by the
flow conservation equation of the node. If we consider all links on which the
flows are determined by the remaining links of the network, these links form
a spanning tree. The reason for that is that as we said before, the flow on 1
one of the links incident to a node is determined uniquely by the flows on
the remaining links incident to the node satisfying in this way the flow con-
servation equation of the node. Now the constraint matrix A has .(n-1)
linearly independent rows, that is, there are (n-1) independent flow con-
servation equations, so that there are (n-1) 1links in the network on which
the flow is determined by the flows on the remaining links. These (n-1)
links cannot form any cycles because one can add flows in the cycle without

violating the flow conservation equations of the nodes in the cycle. This j

would contradict the fact that the values of these (n-1) 1links are uniquely
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determined. Moreover, to every node corresponds at least one such link, there-

fore the links with flows representing basic variables form a spanning tree.

Next we describe how to represent a nonbasic vector (that is, a colum
of A corresponding to a nonbasic variable) in terms of basic vectors. In order

to do this, note that every colum of A (denote it by ?‘ij) is of the form

s =8, -6e.
glJ 91 =j ’

where e. and gj are unity vectors in En, the former having a +1 on the
i-th row and the latter having a *1 on the j-th row. Now, by choosing (n-1)
linearly independent columns of A we form matrix B. Matrix B represents a
spamning tree in the network. Now if we choose a nonbasic link, say the link
(v,w), clearly we will have a umique path consisting of basic links only,
comecting the nodes v and w, since the basic links of the network form
a spanning tree. The above path together with the nonbasic link (u,w) form
a cycle (see Figure Al). By determining the cycle orientation as the direc-

tion of the nonbasic link we will have

B Ayttt T (e,-e,) - (e,¢; ) (eg-e;) + - * (ew-gp) =0 ,

or

L S
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The method for representing a nonbasic vector in terms of basic vectors
is then as follows: First, we determine the cycle formed by adding the nonbasic
link to the spanning tree, Second, we assign to the cycle an orientation,
according to the direction of the nonbasic link. Third, to all basic links in
the cycle having the same direction of the cycle we assign a -1 coefficient in
the representation and to all basic links in the cycle with direction opposite
to that of the cycle we assign a +1 coefficient in the representation. To all
remaining links in the spanning tree we assign a zero coefficient. The above
coefficients correspond to those appearing in the columns of the Simplex
tableau. As said before, these coefficients are +1, -1 or zero. This property
of the A-matrix is called the unimodularity property and it insures that every
basic solution is formed by integers only, provided that b is an all-integers
vector.

From the above considerations it turns out that in order to perform a
pivot in problem (A.4), it is enough to form a cycle and to increase the flow
on every link of the cycle in the direction of the nonbasic link, until the
flow on one of the basic links becomes zero. This link leaves the basis and
the previous nonbasic link enters the basis. When there is a basic link in
the cycle, with direction opposite to it and with zero flow, we say that the
cycle is degenerate. In this case we cannot perform a pivot changing the
flow on the cycle, but we can obtain another representation of the current
basic solution by removing the link that does not permit flow change from the
basis and putting the nonbasic link into the basis. If there are two or moreb
links yielding degeneracy, we can reach all possible representations by apply-

-

ing the above method.

Next we return to problem (A.4), but now consider the case where the
links do have capacity constraints. It turns out that the problem can be

solved in a mamner very similar to the one used in the case without capacity

P i it “M
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constraints by making use of the concept "extended basic solution" (see [Ll],
p. 48). The idea is to treat the capacity constraints (or upper bound con-
straints) in an implicit way (similar to non-negative constraints on variables).
This method avoids the great increase of dimensionality in the problem, result-
ing from the addition of slack variables to the upper bound constraints. For
example, if in problem (A.4) the A-matrix has dimension (nxm), then adding
a slack variable to each of the constraints (A.4b) yields to a constraint
matrix of dimension (n+m) x2m. The concept ''extended basic solution' cor-
responding to problem (A.4) is defined as a feasible solution in which n
variables corresponding to linearly independent colums of A are basic, and
the remaining (m-n) variables are nonbasic, each having either value zero
or being equal to its upper bound (i.e. its capacity). In the network, an
"extended basic solution" is characterized by a spanning tree, that is, the
graph formed by the links corresponding to basic variables is a spamning tree.
Each link corresponding to a nonbasic variable carries either no flow, or flow

equal to the capacity of the link.

Starting from an initial "extended basic solution', in order to make
a pivot in the network, we choose one of the links that is nonbasic and look
for a cycle formed by it with basic type links. If the flow on the nonbasic
link is zero, then we check if we can increase the flow on every link of the
cycle in the direction of the nonbasic link. If the flow on the nonbasic
link is equal to its capacity, then we try to increase the flow on every link
of the cycle in the direction opposite to that of the nonbasic link. In both

cases we increase the flow until either:

(i) The flow on a basic link of the cycle reaches the value of zero or its

capacity.
(11) The flow on the nonbasic link reaches the value of its capacity

(or zero).
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I1f (i) occurs first, then the basic link is declared nonbasic, and
the previous nonbasic link is declared basic. If (ii) occurs first, then the
spanning tree does not change and the nonbasic link remains nonbasic with
another flow.

A degenerate situation corresponds to the case where there is at least
one basic link in the cycle with direction opposite to tﬁat of the cycle and
with zero flow, or a basic link in the direction of the cycle, with flow equal

to its capacity.
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Appendix B

Computer Programs

1. Maximal Flow

The Maximal Flow Algorithm of Edmons and Karp is implemented by a
Fortran Subroutine called MAXFL. The algorithm finds the shortest path between
source and destination on which an increase of flow is feasible, determines the
maximal amount of flow that can be pushed on the path and then performs the in-
crease of flow. The algorithm stops when no such path can be found, and lccal-

izes the minimal cut that is nearest to the source.

N - Number of nodes in the network.

C - Two-dimensional array for the link capacities. Capacity zero
corresponds to non-existing links. To links not having capacity
constraints we assign a very large capacity (at least as the sum
of the capacities of the exit links from the corresponding node).
The dimension of C is (N,N).

Program_Output
The program writes the flow on every link corresponding to maximal flow

and the link capacity. In addition it marks with an asterisk the links directed
to the destination that belongs to the minimal cut, and writes the maximal flow

value,

Dimensioned Local Variables

---------------------------

F - Two-dimensional array for the link flows. The dimension is (N,N).
XT, LAB, NODE and BNODE are one-dimensional arrays of dimension N.
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N

MAIN PRUOGRKAM

INTEGFR C(Hhs0)eFl{H46) o XT{6)

COMMON CoF o XTLABR(S) sl o Ko Ny MFL ‘
00 1000 Li=l,la k
READC(S 310) No((CClad)sJd=leNdl=1lN) -
00 1 I=]N

[ >
mugglgx

102 00 &

/ 105 DO S Ji=1,L

N IF(J=XT(J1))54107,5

5 CONT INUE

106 WRITE(OGe11) IeJeF(IeJ)eClIeJ)

G0 7O 3

107 WRITE(6+12) 1oJeF{l1eJ)eC(10J)

3 CONTINUE

&3 WRITE(6,13) MFL
FORMAT (/e o ®(*0130%s%e]11e%)%e7Xe12:47Xel12)
FORMAT (/e e (® el10%e%el102) % 7N 12:3N,%%*,3X,12)
FORMAT(///7¢2X «*THE VALUE OF THE MAXIMAL FLOW IS*,168)
FORMAT (1HL oOXN s *ARC® AN, ' FLOW® 03X o *CAPACITY?*)
FORMAT(3612/73612)

00 CONYINUE
STOP

- END

[ A e

b b 2ab gt pub P
QOPUN~
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SUBRUOUTINE MAXFL

INTEGFR C(EsB8)eF (He6) e XT(E)eNODE(H)eBNONE(6)DELTA
COMMON CoF o XTJLAR(E) gL o Ko N MFL,
1=1

=0

L=0

DO 7 J=1eN

NODE (J )=0C

BNODE(J) =0

NODE( 1 )=90

DO 1 J=1eN

K1IsSNODEC(]I)
DFEFLTA=IFIX(ANS(FLOAT(K1))})
IF(C(1eJ))100,1004101 ’
IF(C(Ll e U)=F(1:J2)100,100,102
IF(NODF(J))1,103,1

K=K+ 1

"D?LTA,‘OS.IO.',O‘
oJ

IF(J-N’
JizJ
07108

IF (NODE( J 10+110,109

F(lesJ1)=F o J1)HDELTA

Ji=]

GO TO 106

FCILol)=SF (UL ]1)=DFL TA

GO TO 120

IF(CeJIel )1ttt

IF(F(Jel))l,tell2
JI¥ie133,1

LTAY114,114,115

IF(K=L2116:117,117
I=LAB (L)

GO TO 118

L=0 -

MFL =0

DO 3 1=2eN

DO & JU=x] oK
IF(LAB(J)=1)a,3,4
CONT INUE

L=L4+1

xXTL )=1

CONT INUE

D0 S 1I=)eK

DO S J=l,.L
Me_AB( 1)

NisXT( J)
IF(CIMINL)DIL1G45:119
MELEBMELSE(M,NL)
CONT INUE

RETURN

EMD
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2. Determination of all Optimal Solutions

The algorithm described in Part B of Section 4 is implemented by a

Fortran Computer Program composed of two subroutines and a main program.

cececesceccwencenccaw laaen

A MAIN PROGRAM

€ Reads data

' Chooses a nonbasic link

Filters representations
Writes results

E;

' SUBROUTINE CYCLE

: Finds the cycle

: corresponding to the A

nonbasic link chosen
in the main program.

SUBROUTINE PIVOT
Finds the permissible
change of flow on the cycle.
Performs pivot to obtain a
new optimal solution or
representation.

M - Number of network links.
! C - One-dimensional array for the link capacities. The dimension

is M.

F - Two dimensional array for the flows on the links at the current

S optimal solution. Its dimension is (M,N), where N is the
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estimated number of different solutions and representations. A 1
first optimal solution must be supplied to the program (that
obtained from the maximal flow algorithm) that is F(I,l).
BASE - Two-dimensional array that determines which links are basic and
which nonbasic at the current solution. Its dimension is (M,N).
If link I is basic then BASE (I,") = 1, if it is nonbasic
then BASE (I,:) = 0. The basic configuration of the first optimal

solution must be provided to the program, that is BASE(I,l).
LOUT - Ore-dimensional array for the exit nodes of the links.

LIN - One-dimensional array for the entrance nodes of the links.

Program_Qutput
" The program writes all the extremal optimal solutions and their mumber.

In addition it writes the number of different solutions and representations

- searched during the execution.

Dimensioned Local Variables

o .

DIRF, BFR and LAB are one-dimensional arrays of dimension M.
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ALL DR TIMAL TOLUTIONS = MA LN PRNGRAM
SCI 1 =ASE (Re S0 )L IRF () BFRIQ)JDELT
Todlo 1l eColSUTIO)JLINIGIFsBASE JDIRF (BFR M NR

e =~

m.

> Sy St S oy s f'
— e e o i}

Poem MY
@ bl @ s g

Fete
e
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1

Ao TO w)
wC~d4Me ~« QOT

aalrr OO Re 2

T
~0Z

et g s e OO0 NP
-
L ]
"
-
e
4
-

SUWwwwwww A
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@ Qg am onve g

rae |~ o

N ette =4

- pa® 22 Pie wy
eZte ng

Lmw Qo

-
4

N s

3 JizJli+1
= . 1¥(J1eGT MG T 2
a IF (SASE(JY oK) OT0)NRG TR 2
E CALL CYyCL'

DO 100 [=1,.,K2

D0 200 J=1eMm

IF(F(JeX1)eNEeF(Jel))D T 100

200 CONT INUE
GO TO 2
100 CONT INUE

WRITE(G.14) (F(luxl),Ix=1,M)
12=12+1
GO 10O 2
K=K+l
IF(K1eGEX )G TO 1
- : WRITE(&,15) 12
¥ WRITE(6,16) NR
. FORMATI(IZ2)
FORMAT (3012)
FORMATELI T o 3o (*(*eT119%s%sil1e®)e,3Ix))
FORMAT (/45X o9 (12,8Y)) 3
FORMATC(/ /7 42% 4 PNUVHED AF DIFFERENT SDLUTIONS :°,15) :
F?R?;I(///.ZX.'NUMEE& OF OIFFEQSNT SOLUT INNS AND REDRESENTATIONS >
w30,
CEBUG SUROHK
STNe .
EnD «

Cl#“""t.ﬁ."t‘tt’##ttﬁClat#ttt‘ttttt"*’O#‘l...tt‘tt.‘.’tt.t““"‘t.
SUAROUTINE BIvnT
INTEGER C(O) ¢F(D¢50) +HASELDeS0)9DIRF (T3} 4RFR(Q)4OFLT
&?quleoKlo‘?tb‘LToJlol\oCoLQUT(Q)oL’N(Q)oFQBQQFOOlRF.ﬁgpo o NR
=
DN 100 [=1em
100 FlleK1)D)=F{],K)

) 12211
g 1 1F (DIRF €Gel1)GD TN 2
oK1 )=DELT

1
loKl)#DFLT
GO TN

W

b b pub Gab 0= b
R APW=O

N o
Ten

X - o

[}
1
1
)

wN
-
]
-
-y

-

oM
FRASE(1,%)

1 s
7 200  BASE(

-
[ ]
Q

-2 2R
~-Mm N
L%

“
Mo~

400
¥ I Aa00

@ Wt Mgy ed ™ wi,

Xo oo
'
)
b

vO

BP0~ et

1

1
300 CON

K

400  CONTINUE
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LETEPESELRENERNANE ST EE R LLABERARNESBRAEREEFRAREE RFSE SRR XT R BE BN “..“t““"

100

h

-t oo - NN

NGO =

o o

et e RD WN N
Wi &

W
=3
Q

e

15

17

1A

20

SUSAJOU TINE CYCL®

INTEGER CUOQ)eF( D451 ) RASEF (O ,00) 4DIRFIG) 4BRFR(G)JNELTJLAR(D)
EC;“DN KoK oeKZyDILY g N1l .C.LOUT(°).Llu(9).F.‘lASF.DlQ‘.BFR.N.M
Ml=]

Mz}

J2=J1

00 100 I=tl,M

LAS(]I) =0

DIF(JIl ) =1

IFIP LI e DIQNE C(ULDIIG T 24

M2=2

DIRF(JIl )=~}

M} =2

J=0

I1=1

IF(1eGTeM)GO T =

GO TO (10,11 )eM1Y

IFLLOUT( I Y NE SLDUT (U2 )YGG T 3

&N TN 12

IFLLOUT(T)NELLINII2))GO TN 3

IF(RASL(TeK)eNESL1 )LD TO =
NO 200 N=1 M
IF(LAB(N)Y.EO1)GR TN 3
CONTINUE .
DIRF(I )=)

JEJI+1

LAB(J)=1

BFR(I))=J2

GO TO (21622) M2
IF(LINC]I) cEQCeLDUT (V1) IGO TO =
GO TO 3
IF(LINCI)LEQelLIN(JY))IGO TO &
I=let

GO 1O 2

1=1

IF(1.GTeM)GO TO 7

GO TO (13,14),M1

IFILINCL) &NESLAUT(J2)IGD TO &
GO 70O 15 )
IFLLINCTI D) NELLIN(UD)IIGO TN 6
IF(BASE(IK)aNFQ1)3GD T A

DO 300 N=1,M :
IF(LAB(N) o£0.1)G0O TO &
CONTINUE

DIRE(] )==1

JrJel

LAS(J)=!

SFR(1)=J4C

GO TO (23,24) M2
IF(LOUT(I)«F0.L0UTIIL)IGL TO 9
GN TO &
IF(LOUT(TIIEQLLIN(JILIIIGD TN ©
I=t+}

GO TO &

L= +1

J2sLAB (L)

Mis

1=} . .
IF(DIRF(J2)eFCe=1)V]L=2
GO TQ 1
Ii=s]

DELT=C(I)=F (1)
GO TO 1A

L T 17
K)¥IGND TOo 1=

-~
o
°

- »e

=E(J3eK)IIGN TO 15

1243
GO T0 16

CALL P1IVaT
RETURN
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